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Abstract of thesis entitled:

Cross-Device Authentication via Motion Co-analysis with a Smartwatch in
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at The Chinese University of Hong Kong in October 2018

Smart devices contain sensitive information that has to be guarded against

unauthorized access through authentication. Existing authentication methods

become obsolete as they are designed either for logging-in one device at a

time or are ineffective in a multi-user multi-device environment. This thesis

explores the possibilities of using an already-authenticated smartwatch as a

token for fast access and control of other smart devices by analyzing their

motion data. In essence, we look for synchronous rotations between devices to

perform authentication. We propose TwistIn, a simple gesture which the user

twists a device in a to-and-fro manner. This gesture rotates a smartwatch and

a handheld device at the same time, which can be detected using our proposed

algorithm. To log in a device, one simply needs to pick it up and twist it a few

times. Then, by co-analyzing the motion data from the device and the watch,

our method can extend the user authentication on the watch to the device.

This is a simple and tangible interaction that takes only one to two seconds

to perform. It is particularly useful for devices such as smartphones, smart

glasses, and small IoT objects. Furthermore, to account for user variation in

wrist bending, we decompose wrist and forearm rotations via an optimization

i



to improve the method accuracy. We implemented TwistIn, collected two

thousand gesture samples, and conducted various experiments to evaluate our

prototype system and show that it achieved over 95% detection accuracy.
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Chapter 1

Introduction

1.1 Overview

This thesis is about authenticating devices quickly in an environment with

multiple users and devices. There are progressively more devices around us

due to the advancement in technology. Some of these devices, however, are

small with a limited interface. Since current methods are not designed for

accessing many of these small devices, a new method that is fast, secure, and

intuitive is crucial to a better user experience.

This study aims to explore the possibilities of authenticating without using an

interface, or more specifically, using motion data retrieved from the devices.

The purpose of this introductory chapter is to provide the overview of this

thesis. The contributions are listed in the second section and an organization

of this thesis is presented at the end of the chapter.

1



CHAPTER 1. INTRODUCTION 2

1.2 Our Contributions

The main contributions of this thesis are listed below:

• The TwistIn gesture as a novel authentication mechanism for fast lo-

gin to smart devices in a multi-user multi-device environment using a

smartwatch as an authentication token is proposed.

• A fast algorithm developed to detect synchronous rotatory motions be-

tween the smartwatch and the smart device by solving for the optimal

orientation difference between the two devices.

• A rotation decomposition technique formulated to filter out the wrist

rotation from the forearm rotation when handling noisy orientation data.

1.3 Thesis Organization

This thesis consists of seven chapters:

Chapter 2 Background Study

A study on the recent trend of smart devices is presented. The

current authentication approaches are then reviewed. Finally,

this thesis is justified with a motivation.

Chapter 3 Literature Review

A detailed review of the previous research in Smartwatch Inter-

action and Motion Data Analysis is presented.

Chapter 4 Robust Synchronous Rotation Detection

An authentication framework via detecting motion and synchronous

rotation is proposed. Some basic geometry and the use of quater-

nion to represent 3D rotation is first reviewed. An optimization is

introduced to solve the basis transformation between two devices.
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Then, the transformation is analyzed over time to complete the

authentication process.

Chapter 5 TwistIn Gesture and Rotation Decomposition

An improvement to the authentication framework is proposed.

The TwistIn gesture is introduced together with two gesture de-

tection techniques. The optimization described in the previous

chapter is then modified to incorporate rotation decomposition

for filtering out unwanted rotations.

Chapter 6 Performance Evaluation

The proposed methods are evaluated in terms of authentication

accuracy. Motion data are collected from participants performing

the TwistIn gesture and are analyzed offline using a program.

The usability of the TwistIn gesture approach is further evaluated

through a user study.

Chapter 7 Conclusion

The final chapter summarizes this thesis with a discussion of

limitation, application, and future work.

2 End of chapter.



Chapter 2

Background Study

Summary

The current trend of smart devices and the flaws in existing au-

thentication approaches are reviewed in this chapter, followed by

the motivation of this thesis.

2.1 Recent Trend of Smart Devices

Technological advancements have brought us more compact and cost-effective

electronics. Nowadays, a large number of devices are augmented with smart

functionalities, such as smart alarm, smart speaker, smartphone, smart glasses

etc.; see Figure 2.1. It is expected that such a trend will continue to grow with

two emerging technologies. The first is “Internet of Things” (IoT), which

connects the smart devices around us. The advanced connectivity offered is

beneficial for data collection, environment sensing, and ultimately automa-

tion. This encourages developers to adopt the IoT platform for the extended

functionalities. In fact, recent studies have forecasted that there will be more

than 20 billion connected devices by 2020 [15, 7]. The second is “3D Printing”,

4



CHAPTER 2. BACKGROUND STUDY 5

Figure 2.1: Examples of devices with smart functionalities: Wiimote, Google Glass,

LG 360 Cam, mouse, Xbox controller, Raspberry Pi embedded into Lego assembly,

sensor tag keychain, alarm clock, 3D electronic print, Samsung Gear 360, ambient

orb, radio remote controller, RC toy, and smart speaker (from A to N).

which has been evolved to incorporate electronic circuits during the printing

process [51, 42]. Hence, people will soon be able to design and fabricate objects

not only for the 3D shapes but also for the electronic functions, right from their

home. However, with the combined contributions from these technologies, the

exponential growth of smart devices poses a new human-computer interaction

problem, where efficient connection and control of these prevalent devices are

lacking.

2.2 Current Authentication Approaches

A well-designed authentication system should be intuitive and easy to use,

while being able to accept legitimate users and reject imposters [50]. With

the increasing number of smart devices in the surrounding, current methods

that authenticate devices one at a time becomes burdensome, especially when

multiple devices are shared among multiple users.
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PIN, Passcode, Swipe Pattern

A simple approach is to build a hard button menu or a touchscreen on a

device for users to log into the device via a PIN, a passcode, or a swipe

pattern. However, this will inevitably complicate the device and increase the

production cost. In addition, this is a knowledge-based authentication, which

is not suitable for mobile devices whose passcode could be guessable [57, 2],

or easily obtained through a smudge attack [4] or shoulder surfing [48].

Biometrics

Apart from the menu-based approach, one may use physiological biometrics

such as fingerprint (e.g., Apple TouchID) and face [6] for authentication. Even

though they are easy to use, one drawback is that the biometrics of a person

cannot be easily changed. Since biometric authentication systems are vulner-

able to spoofing attacks [40], this could lead to serious consequences if such

information is disclosed to other parties. Furthermore, the approach may

not work in certain circumstances, e.g., fingerprint recognition usually fails

for wet/dirty fingers, and strong sunlight could disrupt the cameras for face

recognition.

Another similar approach is to use behavioral biometrics, e.g., [14, 26, 63, 64].

This relies on extracting features from sensor data and using classifiers to verify

the authentication. Hence, it requires data analysis and training to learn the

user’s biometrics, and the learned model is also limited to a specific action,

meaning that multiple models are needed to recognize variants. Moreover,

users are also required by replicating an exact (or similar) action to enable the

authentication.
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Mobile Application

At present, the norm to interact with smart devices is to make use of mobile

applications on a personal smartphone. This, however, requires us to switch

our mind from the physical world to a virtual world (app), even though the

devices we want to access are just physically located next to us. Besides, the

approach is not scalable and not efficient for handling multiple devices. Every

time we want to switch from one device to another, we have to search for

the respective mobile app and log in again before accessing the device. Such

interaction is neither natural nor efficient. Furthermore, it could also have a

direct impact on the user’s behavior in adopting the login methods and the

related security settings, as suggested in some recent user studies [5, 58, 12].

On the other hand, methods that allow authentication to a group of devices

are inappropriate for environments with numerous people, e.g., workplace and

public venue.

Virtual Assistants

For instance, virtual assistants such as Apple’s Siri and Amazon’s Alexa may

be used to interact with smart devices, but they are ineffective in crowded en-

vironments since the noise in such environments could significantly deteriorate

the voice recognition performance. Moreover, having multiple people speaking

at the same time in different languages is also difficult to process.

Physical Proximity

Another solution is to detect physical proximity and unlock a device when an

authentication token is close to the device [59]. Devices equipped with Blue-

tooth Low Energy [17] such as Apple’s iBeacon [3] and Google’s Eddystone [1]

enable proximity sensing by measuring the received signal strength indicator
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and using a path loss model [16]. For example, an Apple’s Mac computer can

be unlocked by bringing an authenticated Apple Watch near it [10]. While this

method does not require any user’s attention which provides great user expe-

rience, it may cause unintentional logins and unauthorized accesses when the

user passes by a device without the intention of using it, or when an attacker

carries the device close to the user. Furthermore, the presence of multiple

users may also confuse a device, since it cannot deduce who is currently using

it.

Computer Vision

Computer Vision-based systems have been deployed in real life scenarios (e.g.,

Amazon’s Go). A large amount of cameras are installed to provide information

of an area and computers are used to analyze interaction within the area. It

is expensive since the number of cameras and computers needed increases

exponentially with the size of the monitored area. In addition, the line of

sight of the cameras can be easily blocked inside a crowded room.

2.3 Motivation

Multi-user Multi-device Authentication

To develop an authentication method that is suitable in a multi-user multi-

device environment, a key component is to distinguish the user’s intention. A

device needs to identify the user before it can be authenticated automatically;

it is inconvenient if the user has to input the username upon login. Observed

that unless the user is accessing the device remotely, he/she has to interact

physically. Usually, a small device such as a smartphone has to be picked up

before use. If we could identify if that the pick-up action belongs to a user,

the smartphone can then be authenticated immediately. Hence, we can use
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a smartwatch to capture the motion of the user’s hands and then co-analyze

with the motion of the smart device.

Smartwatch

Smartwatches are small-size electronics that are commercially brought into

the market in the 2010s, e.g., Android Wear and Apple Watch. Unlike digi-

tal watches, smartwatches are wearable computers with an operating system,

so they are programmable for supporting a wide variety of applications, e.g.,

information display and health tracking. Indeed, a recent study also showed

that people found smartwatches more useful than smartphones for accessing

time [36], and for short tasks like checking notifications. The reason behind is

that smartwatches are more readily available and users often wear them for a

long period of time.

Motivated by these findings, we aim to explore in this thesis the application of

an already-authenticated smartwatch as a token to tangibly gain quick access

to some other smart devices in a multi-user multi-devices environment .

2 End of chapter.



Chapter 3

Literature Review

Summary

We review previous research on interactions with a smartwatch and

techniques of motion data analysis.

3.1 Smartwatch Interaction

Traditionally, a watch has been used solely for telling the time and date.

Throughout the years, additional features have been constantly added, such

as a stopwatch and an alarm. Until the 2010s, the ability to run an operating

system inside a watch, termed as a ”smartwatch”, has essentially changed how

people interact with these wearable devices.

A smartwatch has distinct characters that contrast with a smartphone, hav-

ing an edge on specific tasks over other devices, but at the same time posing

limitations on interaction design. The major constraint comes from the small

size of the watch. This is a problem of balancing between portability and

computational capability: too small and the watch will suffer from lowered

10
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processing power, shortened battery life, and limited I/O interfaces; too large

and it will no longer be convenient to be strapped on the hand. While elec-

tronics are progressively smaller and faster over the years, a small interface

is always inevitable for wearable devices. Hence, input methods designed for

small devices have been a research problem that has been intensively studied

and explored (e.g. [41, 22, 18, 55].

On the other hand, the specific mount location, the constant contact with

the skin, and the always-available nature [44] allowed unique interactions to

be specially designed for smartwatches. To name a few, one can detect seizure-

like activity using accelerometer commonly found in a smartwatch [35]. This

activity is detected by looking for rhythmic, repetitive movement of an extrem-

ity. One can also perform indoor tracking using activity fingerprint generated

from inertial and acoustic sensors of a smartwatch [33]. Pearson et al. [43] ex-

plored the possibility of using smartwatches as public displays. This provides

relevant information to other people in the proximity, such as weather and the

wearer’s schedule. Xu et al. [62] recognize gestures and finger-writing using

motion sensors installed inside a smartwatch. The acceleration and angular

velocity are sufficient to uniquely identify the user’s hand and finger gestures.

3.2 Motion Data Analysis

Motion data retrieved from devices are analyzed and utilized in many daily

usage scenarios. Various motion gestures have been designed to provide in-

tuitive controls for mobile devices [47, 46, 29]. Moreover, motion data ob-

tained from smartphones and smartwatches had been used for activity classi-

fication [30, 54, 19, 52, 38], and for virtual data manipulation [11, 53, 28]. By

fusing motion data with data from other sensors, we can produce higher-level

information to enhance user interaction. For instance, touch events obtained
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from a multi-touch display could be fused with motion data to distinguish

users [49, 25, 45]. Hinckley et al. [21] provided touch-enhanced motion ges-

tures on a smartphone to enable more expressive touch interactions. Duet et

al. [9] classified interaction on a smartphone by analyzing the phone’s touch-

screen and the motion data of both smartphone and smartwatch. Wilkinson

et al. [60] enriched touch-based interaction on a multi-touch display using

wrist-worn inertial measurement units. Bing et al. [8] enhanced the security

of traditional password authentication by considering smartwatch motion. La-

put et al. [32] fused motion data with readings from various sensors, such as

ambient temperature and illumination intensity, to provide general-purpose

sensing of the environment.

Previous works analyze motion data from multiple devices for different pur-

poses. For example, Tran et al. [56] identified multi-device gestures using a

hidden Markov model, while Kim et al. [27] developed an authoring system for

multi-device acceleration-based gestures, where devices can be associated via

synchronous patterns. Hinckley [20] detected synchronous bumping gestures

against one another by looking for a pair of devices with synchronized opposite

accelerations. Lester et al. [34] determined if multiple devices are carried by

the same person by analyzing the walking data. Since walking generates a

periodic acceleration, gait data can then be analyzed in the frequency domain

using a coherence function. Wolf et al. [61] detected object pick-up events by

comparing the magnitude of angular velocity among devices. When the mag-

nitudes of two devices match each other, a seamless interaction is reported

between the smart devices.

Among the previous works, ShakeUnlock by Findling et al. [13] is the most

closely related work to ours. This method unlocks a device by shaking it with
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another device that has been authenticated. While their work has similarities

with ours by co-analyzing the motions of smartphone and smartwatch, their

method simply considers simultaneous shaking of the two devices and matches

them by correlating the devices’ shaking frequency and magnitude in the ac-

celeration data. Hence, the true matching rate and true non-matching rate

reported in [13] are only 0.795 and 0.867, respectively.

2 End of chapter.



Chapter 4

Robust Synchronous Rotation

Detection

Summary

A review of orientations, rotations, basis transformations, and

the representation of rotation using unit quaternions is presented.

Then, an authentication procedure based on detecting synchronous

rotation is proposed in this chapter.

4.1 Introduction

We focus on a scenario where a user is interacting with a smart device using

the hand that is wearing a smartwatch inside a multi-user multi-device envi-

ronment. To distinguish if that specific user picks up the smart device, we

can study and analyze the motion data from both devices together. In this

chapter, we first make some assumptions and go through some basic geom-

etry involving orientations, rotations, and basis transformations. Then, we

proceed to construct an optimization to robustly solve for the basis transfor-

14



CHAPTER 4. ROBUST SYNCHRONOUS ROTATION DETECTION 15

mations between two sets of rotations and verify the devices are rotating in

synchrony. An overview of the whole authentication procedure is summarized

in Algorithm 2 (Section 4.8).

4.2 Assumptions

Here, we assume that the smartwatch is already logged in by the user, and

will stay in the authenticated state until the user takes off the smartwatch.

Moreover, The devices are also synchronized in time, so the motion data can

be compared and analyzed across devices.

4.3 Orientations and Quaternions

Assuming each device contains motion sensors including an accelerometer and

a gyroscope. They are capable of measuring acceleration and angular veloc-

ity in three dimension respectively. The sensors data can then be fused into

orientation in unit-quaternion representation using a sensor fusion algorithm

such as a Madgwick Filter [37] or a Kalman Filter[39]. Finally, two time series

of 3D orientation data represented as quaternions qtA and qtB for devices A and

B at time t can be obtained.

Unit quaternions represent 3D rotations in a straightforward fashion. In-

deed, every rotation in axis-angle representation can be easily converted to

unit quaternion. For instance, an anticlockwise rotation of angle φ around

axis ~v = [vx, vy, vz] can be represented by the following quaternion:

q = [cos
φ

2
, vx sin

φ

2
, vy sin

φ

2
, vz sin

φ

2
], (4.1)

which is in fact a unit vector in 4D space.
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Figure 4.1: A 3D rotation of φ degrees around an arbitrary axis ~v is the same as

a 3D rotation of −φ degrees around −~v. Therefore, both quaternions q and −q

represents the same 3D rotation.

Note that quaternions are compact representations (i.e., unit vectors in 4D)

with which we can smoothly interpolate orientations and rotations in 3D space.

In addition, the unit-quaternion notation is simpler for us to enforce the unit

magnitude constraint compared to the orthonormal matrix representation for

3D rotations [23].

However, the quaternion formulation represents the same orientation by q

or −q, whose components have equal magnitude but opposite signs. This is

because a 3D rotation of φ degrees around an arbitrary axis ~v is the same

as a 3D rotation of −φ degrees around −~v; see Figure 4.1. Hence, before we

interpolate between two quaternions, say q1 and q2, we should flip the sign of

q2, if the interpolation path (angular changes) between q1 and −q2 is shorter

than that between q1 and q2. Therefore, after reading the input orientation

data, we first check and flip each quaternion by comparing it with the previous

quaternion in the data series. We calculate the angle between two successive

quaternions, say qt and qt+1, in a time series as

θ = cos−1( 2〈qt, qt+1〉2 − 1 ), (4.2)

where 〈qt, qt+1〉 stands for the dot product of qt and qt+1. In other words,
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〈qt, qt+1〉 = ±
√

cos θ + 1

2
. (4.3)

It can be seen that the dot product of two quaternions is closely related to the

angle θ between them. In fact, if θ is larger than π, their dot product should be

negative. Therefore, we calculate the dot product between successive quater-

nions and negate the next quaternion (qt+1) accordingly; see Algorithm 1.

ALGORITHM 1: Detect and flip successive quaternions to minimize the

angular changes between all successive pairs.

Input: q1, q2, ..., qn

Output: q1, q2, ..., qn

for i = 1, 2, ..., n− 1 do

if qt · qt+1 < 0 then

qt+1 = −qt+1

end

end

4.4 Analyze q over Time

When the user is at rest, the smartwatch should not register any motion other

than noise. Similarly to devices that are not in use. Therefore, stationary

devices should be ignored in the algorithm. To check if a device is moving or

not, we analyze q over time before we perform authentication. We measure

the change of device’s orientation by performing dot products on consecutive

data. The faster the user moves the device, the larger the dot product is. We

compare the sum of the dot products against a threshold βmove to deduce if

the device is sufficiently moved.

βmove <
∑

t∈Tauth

1− qt · qt+1 , (4.4)

where Tauth is the time window in which we analyze the data and perform

authentication.
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If the sum of dot product is smaller than the threshold, we can immediately

stop and exit the algorithm. Otherwise, we proceed to the next step where we

calculate the devices’ rotations.

4.5 Rotations

(a) (b) (c)

Figure 4.2: (a) The device’s reference frame. (b) The orientation of a device refers

to the rotation from the reference frame to the device’s current orientation. (c)

Given qold and qnew, we can compute the device’s change in orientation ∆q as shown

above.

Each orientation data of a device is in fact a 3D rotation from a reference

frame; see Figures 4.2a and 4.2b. Typically, the device’s reference frame is

unknown, since it is hardware- and software-dependent, as well as depending

on the initial bearing of the device when the device starts moving. Moreover,

the user may have different ways of holding a device at different times, so

we cannot assume a fixed orientation difference (i.e., basis transformation)

between the reference frames of the two devices. Rather, we have to properly

rotate and align the two motions. Hence, to facilitate the comparison between
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Figure 4.3: To measure the correlation between two motion data acquired in different

reference frames (coordinate systems), we first need to find the basis transformation

to rotate and align the motions in a common frame.

the quaternion series from the two devices A and B, we compute the change

in orientation over time for each of the two devices (see Figures 4.2c):

∆qtA = qt+αA × (qtA)−1 and ∆qtB = qt+αB × (qtB)−1 , (4.5)

where q−1 stands for the inverse of quaternion q, ∆q is the change in q over

time, and α is empirically set as 0.1 seconds, since computing the difference be-

tween two consecutive quaternions (with much shorter time difference) would

result in a very tiny rotation, which could be too sensitive to the noise.

4.6 Basis Transformation

If the two devices move together, we should be able to find a basis transfor-

mation, which a 3D rotation, to align their orientation data; see Figure 4.3.

Suppose ∆qtA : qtA → qt+αA is a linear transformation, which represents a

rotation in device A’s space from qtA to qt+αA and similarly, ∆qtB : qtB → qt+αB

for device B’s space. Denoting r as the quaternion of the basis transformation,

we should have

∆qtA = r ∆qtB r−1 ∀t ∈ Tbasis , (4.6)
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where Tbasis is the period in which we estimate the basis transformation r and

Tbasis < Tauth

Next, there are two issues that we have to deal with. First, the basis trans-

formation computed between ∆qtA and ∆qtB is not the same as that between

∆qtA and ∆(−qB)t. Fortunately, this issue has been handled after the data

acquisition when we detect and flip the quaternion samples; see the previ-

ous subsection. Second, as the acquired data does not have infinite precision

and is contaminated with noise, we have to find an r that best fits all pairs

of orientation data via an optimization that maximizes the alignment of the

orientation data:

max
r

∑
t∈Tbasis

〈∆qtA, r ∆qtB r−1〉

subject to ||r|| = 1 .

(4.7)

Suppose ∆qtA = [wtA, x
t
A, y

t
A, z

t
A] and ∆qtB = [wtB, x

t
B, y

t
B, z

t
B]. We can solve for

r directly by expressing quaternion multiplication as matrix multiplication.

We rearrange the objective function to

rT

(
n∑
i=1

QiT
A Q̄

i
B

)
r (4.8)

where

Qi
A =


wiA −xiA −yiA −ziA
xiA wiA −ziA yiA

yiA ziA wiA −xiA
ziA −yiA xiA wiA


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Q̄i
B =


wiB −xiB −yiB −ziB
xiB wiB ziB −yiB
yiB −ziB wiB xiB

ziB yiB −xiB wiB


or

rT

(
n∑
i=1

Ni

)
r = rTNr (4.9)

Since N is not symmetrical, we calculate N ′ = N+NT

2
which is a symmetric

matrix. Then, the optimal r that maximizes the optimization will be the

eigenvector of N ′ corresponding to the largest eigenvalue.

4.7 Analyze r over Time

To verify if the motions of the two devices are in synchrony, we analyze r over

time by constructing a time series for r (denoted as rt) over Tauth. Note that

Tauth can be divided into three sub-periods: (i) before the device is picked

up, (ii) the user is picking up the device, and (iii) the device is held in the

user’s hand. Among the sub-periods, we focus on the middle sub-period,

since the devices undergo major rotations while the device is being picked

up. Therefore, we compute weights (ht, which is also a time series) associated

with rt by calculating the rotation magnitude between successive orientation

samples:

h =
∑

t∈Tbasis

[
(1−min(1, |∆qtA ·∆qt+1

A |)) + (1−min(1, |∆qtB ·∆qt+1
B |))

]
.

(4.10)

Then, we compute the weighted mean of r over the period:

r̄ =

∑
t∈Tauth h

trt

||
∑

t∈Tauth h
trt||

. (4.11)
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In detail, if the motion of two devices are in sync, the variation of r over Tauth

should be small and the objective function (see Eq. (4.7)) should also have a

small value. Hence, we consider two conditions to see if the motions are in

sync: (i) the weighted mean squared prediction error, which describes how r̄

fits the data, and (ii) the weighted variance of rt, which describes the stability

of the estimated basis transformation over Tauth. Afterwards, we check the

results against their corresponding thresholds βerr and βvar:√∑
ht(1− (∆qtA · r̄∆qtB r̄−1)2)2∑

ht
< βerr (4.12)

√∑
ht(1− (rt · r̄)2)2∑

ht
< βvar . (4.13)

If both conditions are true, we said that the two motions are in sync.

4.8 Overall Authentication Procedure

In this section, the overall authentication procedure is presented, which is built

on top of the various components described earlier; see Algorithm 2. To sum-

marize, a series of orientation data from each device is collected and resampled

using a Gaussian Filter. The resampled time series are then used to calculate

the devices’ rotation. After that, a time series of basis transformation is solved

via an optimization model (See Eq. (4.7)). After checking if both devices have

been moving sufficiently by analyzing q over time, the basis transformation

time series is analyzed by calculating the weighted mean squared prediction

error and the weighted variance of basis transformation. If both values were

smaller than their respective thresholds, the devices will be authenticated.
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ALGORITHM 2: Overall Authentication Procedure

Input: Time series of Orientation data from Devices A and B

Output: Authentication State

Resample and smooth orientation data using Gaussian filtering (qtA and qtB)

Calculate device rotation (∆qtA and ∆qtB)

Calculate basis transformation using optimization (rt)

if both devices are in motion (i.e., not stationary) then
Calculate weighted mean squared prediction error

Calculate weighted variance of basis transformation

return true if both values are smaller than their respective thresholds

end

return false

4.9 Limitation

There are two limitations regarding this method. First of all, the human hand

consists of a wrist joint. Any motion caused by the wrist will be reflected

at the device held by the hand but not the smartwatch. This discrepancy

leads to incorrect rejection, which is a type II error. Another problem is

the accidental authentication due to the device’s incapability of distinguishing

user’s intention. It will authenticate as long as the same rotation is registered

at both devices, such as when the user is making a turn. This is a type I error

where the devices are authenticated without the user’s consent.

4.10 Conclusion

The mathematical background of motion co-analysis is reviewed in this chap-

ter. We described how the input sensor data is used to verify the authentica-

tion. However, there are still a number of shortcomings that are mentioned

in section 4.9 that have to be addressed. In the next chapter, we introduce a
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twisting gesture which is designed for users to access devices and an improved

optimization that filter out unwanted motion through rotation decomposition

to tackle these challenges.

2 End of chapter.



Chapter 5

TwistIn Gesture and Rotation

Decomposition

Summary

An intuitive twisting gesture is introduced and two techniques for

gesture detection are proposed. An algorithm is proposed to filtered

out unwanted rotation from noisy motion data by decomposing the

rotation.

5.1 Introduction

Our aim is to authenticate a device when a user picks it up. In the previous

chapter, the devices are authenticated through detecting synchronous rotations

between them. However, the devices should not be unlocked if the user has

no intention to use them. For example, when the user is on a bus and the

bus makes a turn, the same rotation would be registered in both devices; this

should not be treated as a successful authentication. Therefore, in this chapter,

an easy-to-use twisting gesture that allows users to indicate their intention

25
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Figure 5.1: Illustrating how TwistIn works. In this example, one may log in a

computer through a smart mouse. First, one may pick up the mouse (middle) and

perform the TwistIn gesture in mid-air for one to two seconds (right). Then, our

method can make use of the motion sensor installed in the smart mouse to record

the mouse’s motion and co-analyzes it with the watch’s motion to detect if the two

motions are in sync. If so, our method can extend the user authentication from the

watch to the computer. Hence, the user can log in to the computer in a split second,

and continue to hold and use the mouse as usual.

of using the devices is introduced. Then, the gesture detection algorithm

and a new optimization based on rotation decomposition are described. The

modified authentication procedure is summarized in Algorithm 3 (Section 5.5.

5.2 TwistIn Gesture

To authenticate only when the user purposely reaches for the device, the user

is required to actively perform a gesture. This gesture has to be simple and

intuitive to the user while at the same time rotates the devices sufficiently.

When the user is wearing a smartwatch and holding a smart device, the most

convenient way to rotate both devices at the same time is to twist both devices

along the forearm; see figure 5.1 which shows a demonstration of logging into

a computer by picking up a mouse and twist, assuming motion sensors are

embedded into the mouse. We name this as the “TwistIn” gesture.
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Figure 5.2: Twist about forearm (primary) and swing about wrist (secondary) dur-

ing the TwistIn gesture.

5.3 Gesture Detection

If the motion of the two devices is in sync, it does not mean that the user

performs the TwistIn gesture. In particular, when both devices are kept sta-

tionary, their motions are also in sync. In section 4.4, a method to check for

device’s motion is introduced so that stationary devices are ignored and not

considered for authentication. Now that TwistIn is suggested, some patterns

can be observed when a TwistIn gesture is performed. Hence, we can detect

and see if the device motion is really a TwistIn gesture instead of simply check-

ing if the device is stationary or not.

Note that the user wears a smartwatch and holds a smart device during the

TwistIn gesture, and performs TwistIn by revolving the smart device about

his/her forearm a few times from left to right and right to left; see Figure 5.2.

Here we replace the method introduced in section 4.4 with the following two

methods: (i) analyze ∆q over time, and (ii) count the number of twists within

Tauth. We reuse Tauth as the time period in which we detect the TwistIn gesture

which is defined in chapter 4.4.
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5.3.1 Analyze ∆q over time

Instead of analyzing q over time, we analyze ∆q instead. This is because when

a device is being twisted in a to-and-fro fashion, a great change in rotation

direction can be observed within a small time frame. Similar to Section 4.4,

we measure the change of device’s rotation by performing dot products on

consecutive data. The faster the user twists the device, the larger the dot

product is. We compare the dot products against a threshold βmove’ to deduce

if the device is sufficiently twisted.

βmove’ <
∑

t∈Tauth

1−∆qt ·∆qt+1
(5.1)

where ∆qt is given in Eq. (4.5).

5.3.2 Count the Number of Twists

Although the first method detects if twisting is performed to the devices, we

cannot distinguish if the devices are twisted at the same time or not; this

results in false positive if the devices are twisted at a similar magnitude, but

different phases. In the second method, we count the number of twists and

verify if the gesture is detected simultaneously at the devices.

For each device, we analyze the w-component of its orientation data (quater-

nions) and locate the turning points over the authentication period Tauth.

In detail, turning points are time moments, where the gradient of the w-

component changes sign. In other words, they are local minima or local max-

ima; see Figure 5.3(a)-(d). Note also that we use the w-component because

its changes indicate the angular variations according to the quaternion formu-

lation. In addition, if there are fewer than N turning points within Tauth, we

regard the device as not performing the TwistIn gesture, e.g., see Figure 5.3(d).

On the other hand, since there may be more than N turning points within
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Figure 5.3: An illustration of rejecting invalid pairs of motion data by matching the

turning points in time. We adopt two conditions for filtering. First, there should be

at least seven turning points within the gesture detection period (Tauth); compare

(a-c) with (d): watch C does not have sufficient turning points. Second, the turning

point periods (Tturning) of the two devices should have sufficient overlap; compare

(e) and (f): watch B’s Tturning does not have sufficient overlap with the Phone’s

Tturning. Note also that the horizontal axes in these plots are time.
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Tauth, for each device, we locate the sequence of N consecutive turning points

that has the largest absolute oscillation magnitude in w compared to all other

sequences within Tauth. We denote Tturning ⊂ Tauth as the period between the

first and last turning points in the sequence.

Next, if both the smart device (e.g., a smartphone) and the smartwatch have

sufficient turning points within Tauth, we compare their Tturning periods and

compute how much their Tturning periods overlap. If the overlap percentage is

lower than βoverlap (which is empirically set as 60%), we regard the two devices

as not performing the TwistIn gesture together. Note also that this turning

point analysis procedure is fast to compute and can help to efficiently filter

out motions that do not correspond to the TwistIn gesture.

5.4 Rotation Decomposition

As mentioned in section 4.9, the optimization introduced in section 4.6 Eq. (4.7)

is vulnerable for two reasons: (i) the wrist rotation, which would affect the

device held on user’s hand (see introduction and Figure 5.2); and (ii) the elbow

movement, which would affect both devices. Hence, we filter out the unwanted

secondary rotations by formulating a rotation decomposition [24] in our opti-

mization model.

The rotation decomposition is formulated as follows. Given a rotation rep-

resented as quaternion q = [w, ~q], where w is the scalar part and ~q is the

vector part of the quaternion, and given a unit vector ~a as the axis of the

primary rotation, we want to decompose q into two parts: (i) the primary

rotation (denoted by quaternion p), which rotates around ~a, and (ii) the sec-

ondary rotation (denoted by quaternion s), which does not rotate around ~a.
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Hence, q = sp, and p can be calculated as:

p =
[w, (~a · ~q)~a]√
w2 + (~a · ~q)2

, (5.2)

which can be geometrically interpreted as a projection of a rotation q to

an axis ~a, and then followed by a normalization.

5.4.1 Reformulate the Optimization

In our problem, the primary rotation (twist) axis, which is common to both

devices, is known, and they were to be solved through the optimization. Let

~aA and ~aB be the primary rotation axes of devices A and B defined in their

own reference frames, respectively. In addition, we define the corresponding

rotations around ~aA and ~aB as quaternions ãA = [0, ~aA] and ãB = [0, ~aB],

respectively. Note also that r is the quaternion of the basis transformation

between ~aA and ~aB, so we have ãA = r−1ãBr.

Suppose ∆qtA = [wtA, ~q
t
A] and ∆qtB = [wtB, ~q

t
B]. We then reformulate the opti-

mization model in Eq. (4.7) as:

max
~aA, ~aB ,r

∑
t∈Tbasis

〈ptA, r ptB r−1〉

subject to || ~aA|| = 1, || ~aB|| = 1, and ||r|| = 1,

(5.3)

where ptA =
[wt

A,( ~aA·~q
t
A) ~aA]√

(wt
A)2+( ~aA·~qtA)2

and ptB =
[wt

B ,( ~aB ·~q
t
B) ~aB ]√

(wt
B)2+( ~aB ·~qtB)2

.

Then, the objective function can be rewritten as∑
t∈Tbasis

〈ptA r, r ptB〉 . (5.4)

Putting ~aA = [ax, ay, az] and ~aB = [bx, by, bz], we can then multiply out the
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objective function in matrix form:

〈ptA r, r ptB〉 =



wt
A −ax( ~aA · ~qtA) −ay( ~aA · ~qtA) −az( ~aA · ~qtA)

ax( ~aA · ~qtA) wt
A az( ~aA · ~qtA) −ay( ~aA · ~qtA)

ay( ~aA · ~qtA) −az( ~aA · ~qtA) wt
A ax( ~aA · ~qtA)

az( ~aA · ~qtA) ay( ~aA · ~qtA) −ax( ~aA · ~qtA) wt
A


r

√
(wt

A)2+( ~aA·~qtA)2

·



wt
B −bx( ~aB · ~qtB) −by( ~aB · ~qtB) −bz( ~aB · ~qtB)

bx( ~aB · ~qtB) wt
B −bz( ~aB · ~qtB) by( ~aB · ~qtB)

by( ~aB · ~qtB) bz( ~aB · ~qtB) wt
B −bx( ~aB · ~qtB)

bz( ~aB · ~qtB) −by( ~aB · ~qtB) bx( ~aB · ~qtB) wt
B


r

√
(wt

B)2+( ~aB ·~qtB)2

=
wt

AI+( ~aA·~qtA)MAr√
(wt

A)2+( ~aA·~qtA)2
· w

t
BI+( ~aB ·~qtB)MBr√
(wt

B)2+( ~aB ·~qtB)2
,

(5.5)

where we denoteMA =


0 −ax −ay −az
ax 0 az −ay
ay −az 0 ax

az ay −ax 0

 andMB =


0 −bx −by −bz
bx 0 −bz by

by bz 0 −bx
bz −by bx 0

 .

Then, we can further multiply out the terms in the numerators and obtain

wt
Ar·w

t
Br+w

t
Ar·( ~aB ·~q

t
B)MBr+w

t
Br·( ~aA·~q

t
A)MAr+( ~aA·~qtA)( ~aB ·~qtB)[(MAr)·(MBr)]√

[(wt
A)2+( ~aA·~qtA)2] [(wt

B)2+( ~aB ·~qtB)2)]
.

(5.6)

In the above equation, the matrix-vector multiplication MAr and MBr are

actually the multiplication of two quaternions, i.e.,

MAr = rãA and MBr = ãBr , where ãA = [0, ~aA] and ãB = [0, ~aB] .

Hence, we have (MAr) ·(MBr) = (rãA) ·(ãBr) = (rãAr
−1) ·(ãB). Note that the

term (rãAr
−1) is equivalent to applying rotation r to vector ~aA. Since there al-

ways exists an r, such that rãAr
−1 = ãB, the optimized value of (MAr) ·(MBr)
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must be 1. In addition, r · r is obviously one, and for rMAr and rMBr, if we

multiply them out, we will find that rMAr = rMBr = 0.

Therefore, we can simplify the optimization model in Eq. (5.3) as

max
~aA, ~aB

∑
t∈Tbasis

wtAw
t
B + ( ~aA · ~qtA)( ~aB · ~qtB)√

[(wtA)2 + ( ~aA · ~qtA)2] [(wtB)2 + ( ~aB · ~qtB)2)]

subject to || ~aA|| = 1 and || ~aB|| = 1 .

(5.7)

5.4.2 Deriving the Optimization Solution

To solve the optimization problem, we iteratively apply the Lagrange multi-

pliers. Let ~qtA = [xtA, y
t
A, z

t
A] and ~qtB = [xtB, y

t
B, z

t
B]. We first initialize ~aA

0 and

~aB
0 as the means of the corresponding rotation axes:

~aA
0 =

1

n

∑
t∈Tbasis

~qtA
||~qtA||

and ~aB
0 =

1

n

∑
t∈Tbasis

~qtB
||~qtB||

, (5.8)

where n is the number of quaternion samples within time period Tbasis. Then,

we obtain the following equations using the Lagrange multipliers:

~aA
k+1 =


∑

t∈Tbasis
( ~aB

k·~qtB) xtA√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]∑

t∈Tbasis
( ~aB

k·~qtB) ytA√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]∑

t∈Tbasis
( ~aB

k·~qtB) ztA√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]



~aB
k+1 =


∑

t∈Tbasis
( ~aA

k·~qtA) xtB√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]∑

t∈Tbasis
( ~aA

k·~qtA) ytB√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]∑

t∈Tbasis
( ~aA

k·~qtA) ztB√
[(wt

A)2+( ~aA
k·~qtA)2] [(wt

B)2+( ~aB
k·~qtB)2)]


(5.9)

followed by normalizations

~aA
k+1 =

~aA
k+1

|| ~aAk+1||
and ~aB

k+1 =
~aB
k+1

|| ~aBk+1||
. (5.10)
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Figure 5.4: Noting that ∆qA is device A’s rotation and ∆qB is device

B’s rotation, and each is expressed as a rotation around an axis. Apply-

ing r1 or r2 to transform ∆qA can result in ∆qB or ∆q′B, where ∆q′B is

[(∆qB)w,−(∆qB)x,−(∆qB)y,−(∆qB)z].

We observed that ~aA
k and ~aB

k both converge in our experiments. In prac-

tice, a good approximation of the axes can be found in around three iterations.

After we obtain the optimization solutions ~aA and ~aB, we have to account for

the fact both ~aA and − ~aA are valid solutions for the rotation axes of device A,

and similarly for ~aB and − ~aB, as valid rotation axes of device B. Hence, r can

be computed in four different ways using ± ~aA and ± ~aB. As a result, we have:

r1 =
[ ~aA · ~aB + 1, ~aA × ~aB]

||[ ~aA · ~aB + 1, ~aA × ~aB]||
, r2 =

[ ~aA · − ~aB + 1, ~aA ×− ~aB]

||[ ~aA · − ~aB + 1, ~aA ×− ~aB]||
. (5.11)

Lastly, we apply each of them to transform ∆qA, and check which of the

transformed result leads to ∆qB to determine whether r1 or r2 is the actual

basis transformation of r; see Figure 5.4.
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Figure 5.5: A running example showing the time series processing in the TwistIn

Authentication Procedure.

5.5 Overall TwistIn Authentication Procedure

In this section, the overall TwistIn authentication procedure is presented,

which is modified from the previous procedure; see Algorithm 3. The opti-

mization model now features rotation decomposition and the motion detec-

tion is replaced with the gesture detection algorithm. Figure 5.5 presents a

complete overview showing how the time series is calculated and processed.

ALGORITHM 3: Overall TwistIn Authentication Procedure

Input: Time series of Orientation data from Devices A and B

Output: Authentication State

Resample and smooth orientation data using Gaussian filtering (qtA and qtB)

Calculate device rotation (∆qtA and ∆qtB)

*Calculate basis transformation using optimization model with rotation decomposition(rt)

if *both devices have been sufficiently twisted by analyzing their turning points then
Calculate weighted mean squared prediction error

Calculate weighted variance of basis transformation

return true if both values are smaller than their respective thresholds

end

return false

*Changes are made on the lines marked with an asterisk.
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5.6 Limitation

Including rotation decomposition into the optimization is only possible because the

TwistIn gesture twists the devices around a single axis. The rotation caused by the

wrist is minimal and can be filtered out. However, if the user performs TwistIn

gesture while doing something else (e.g., turning around, running, etc.), the mag-

nitude of the unwanted rotation will be comparable to the twist rotation. This

affects the performance of the optimization which results in a higher rejection rate

of the authenticate attempts. This is reflected in Experiment 3 detailed in the next

chapter.

5.7 Conclusion

The shortcomings in the previous chapter are addressed in this chapter. The TwistIn

gesture is presented with two gesture detection algorithms. The unwanted secondary

rotation caused by the motion of the wrist is filtered out with an improved opti-

mization using rotation decomposition. In the next chapter, the performance of all

the previously mentioned methods is evaluated.

2 End of chapter.



Chapter 6

Performance Evaluation

Summary

The implementation details of the authentication procedures described

in the previous chapters are presented here. They are evaluated in terms

of accuracy and usability through a series of experiments. To evaluate

the accuracy, motion samples collected from volunteers performing the

TwistIn gesture are analyzed offline using a custom software. Then,

the usability is evaluated with a user study where volunteers are inter-

viewed.

6.1 Introduction

Since the proposed method is related to an interaction between people and com-

puters (i.e., a Human-Computer Interaction), we have to check if it fits what users

need or want, and whether it functions as expected. Hence, the performance of the

methods is evaluated from two perspectives. Naturally, this chapter is divided into

two parts:

37
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• In the first part, the performance of the authentication techniques presented

in the previous chapters are evaluated in terms of accuracy (i.e., the rate of

successful authentication and prevention of hacking attempts). This verifies

if the proposed method is feasible. A custom software is developed to search

for the optimal parameters that maximize the performance for each method.

The methods are then compared with each other.

• In the second part, the usability of the TwistIn gesture is evaluated (i.e., if the

users like our method, or if they find it useful). This verifies if the proposed

method is practical. The quality of a user’s experience when interacting with

the method is measured by comparing with other existing methods, such as

using a PIN or via fingering recognition. A user study is conducted and

volunteers are invited to an interview.

6.2 Evaluating Authentication Accuracy

To evaluate the accuracy, volunteers are invited to authenticate using the proposed

methods and motion samples are collected from a smartphone and a smartwatch.

The details of the hardware and data collection procedures are first described in

Section 6.2.1. The evaluation methodology including the metrics and the technique

used to search for the optimal parameters are explained in Section 6.2.2. A custom

software developed for offline analysis is documented in Section 6.2.3. Finally, three

experiments detailed in Section 6.3 to Section 6.5 are conducted to evaluate the

performance of the proposed method under different scenarios.

6.2.1 Hardware and Data Collection

We implemented the prototype of TwistIn using Objective-C, and employ this pro-

totype for two purposes in our experiments. First, it provides a user interface to

demonstrate our method to the users. Second, it collects motion samples for offline

data analysis and evaluation. Concerning the hardware, we used an iPhone 6S (iOS
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Figure 6.1: Experiment setup using an iPhone 6S (iOS 10.3.3) and an Apple Watch

1 (watchOS 3.0). The series of images illustrate how a single twist is performed.

Figure 6.2: Using a Gaussian filter to resample and smooth the orientation data.

10.3.3) and an Apple Watch 1 (watchOS 3.0); see Figure 6.1. Both devices contain

an accelerometer and a gyroscope, which measure the acceleration and angular ve-

locity of the device. These data can then be fused into the orientation data using

sensor fusion algorithms. The orientation data is represented in quaternion and can

be retrieved at 100Hz directly using the Apple’s Core Motion Framework. Since we

paired the devices via Bluetooth and performed time synchronization prior to the

experiment, we could stream the smartwatch’s orientation data to the smartphone

using Apple’s WatchConnectivity Framework.

Note that even though each orientation data is associated with a timestamp, the data

is not uniformly sampled over time, so the timestamps of the orientation data from

the two devices may not match one another. Hence, we resample the quaternion

data from each device and produce two series of uniformly-sampled and synchronized

quaternion samples; see Figure 6.2 for an illustrative example. In addition, we

should first ensure that the internal clocks of the two devices are synchronized

when we start the systems. In detail, the resampling is done by using a Gaussian

filter with σ set to be 0.03 seconds over a period of 0.1 seconds, and we perform a

normalization on each resampled quaternion to ensure that it is a unit vector. After
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the resampling, we obtain two time series of orientation data which can be analyzed

and authenticate devices using the procedures described in previous chapters. We

also archive the orientation time series from both devices as space-delimited files for

further evaluation.

6.2.2 Evaluation Methodology

This section describes the methods and metrics used for evaluating the authentica-

tion accuracy.

Evaluation Metrics

We compare the performance using the following evaluation metrics.

• True Positive Rate (TPR)

measures the success rate of accepting a positive case.

• False Positive Rate (FPR)

measures the error rate of accepting a negative case.

• False Negative Rate (FNR)

measures the error rate of rejecting a positive case.

• True Negative Rate (TNR)

measures the success rate of rejecting a negative case.

• Equal Error Rate (EER)

reflects the method’s accuracy, which is defined as EER = FPR+FNR
2 .

These evaluation metrics were calculated using the optimal parameters to perform

the authentication procedure on all the motion sample pairs.
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Optimal Parameters

The optimal parameters were obtained by exhaustively searching the parameter

space using an approach similar to gradient descent, such that the performance was

maximized, i.e., minimizing the squared error (MSE =
√

FNR2 + FPR2). Below,

we recall all the parameters used in the methods presented in previous chapters:

Tauth −− time period taken to evaluate and detect the TwistIn gesture; see Section 4.4, 5.3.1 & 5.3.2;

Tbasis −− time period taken to optimize for the basis transformation; see Section 4.6 & 5.4.1;

βmove −− threshold for sum of dot products of consecutive orientation q; see Section 4.4;

βmove’ −− threshold for sum of dot products of consecutive orientation ∆q; see Section 5.3.1;

N −− minimum number of turning points in a TwistIn gesture; see Section 5.3.2;

βoverlap −− minimum overlap percentage between the devices’ turning period (Tturning); see Section 5.3.2;

βerr −− threshold for weighted mean squared prediction error; see Section 4.7, and;

βvar −− threshold for weighted variance of basis transformation; see Section 4.7.

Search Algorithm

There are two types of parameters, evaluation periods and thresholds. The evalu-

ation periods determine how much data is used for calculation; a longer evaluation

period gives a more accurate result, but may smooth out details. On the other

hand, the thresholds are set to optimize performance, i.e., minimizing the MSE.

The following algorithm is used to search for the optimal parameters:

1. The algorithm is initialized using an initial guess of evaluation periods and cal-

culate the time series of Device Rotation, Basis Transformation, Mean Squared

Prediction Error, and Variance of Basis Transformation.

2. For every case, the time series of Prediction Error and Variance are compared

against an initial guess of thresholds. The number of positive cases that were

failed to authenticate (i.e., False Negative) and the number of negative cases

that were authenticated accidentally (i.e., False Positive) are recorded and the

MSE is calculated.
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3. A small constant step size is applied to the thresholds and a set of MSE’s is

obtained. The search of the parameter space is sped up by focusing only on

the neighbors that produce a smaller MSE. This process is repeated until the

MSE can no longer be further lowered.

4. Similarly, a small constant step size is applied to the evaluation periods to

calculate new sets of time series, which are used to acquire the correspond-

ing optimal thresholds and minimum MSE using the strategy outlined in the

previous step.

5. Finally, the optimal parameters are obtained when the MSE cannot be further

minimized.

Note that the solution is not unique (i.e. different sets of evaluation periods and

thresholds could produce the same performance). In this case, we prefer the solution

with the smallest evaluation periods and hence, shorter authentication time.

6.2.3 Offline Analysis Software Implementation

Overview

The search algorithm described is implemented in c++. There are three components

in the program: (i) File Manager, (ii) Solver, and (iii) Exporter. The file manager is

responsible for reading recorded files to memory, parsing data, and resampling. The

solver searches for the optimal parameters and calculates the evaluation metrics.

Finally, the exporter saves the output to a file. Figure 6.3 and Figure 6.4 shows the

call graph and the UML class diagram of the program respectively.
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Figure 6.3: A simplified call graph of the program

Figure 6.4: A simplified UML class diagram of the program

main

The main function reads files, analyzes, evaluate, and exports results according to

the user’s settings. There are mainly five modes to choose from:

1. Search Mode

This mode searches for the optimal parameters that produce the best perfor-

mance. To speed up the process, multiple threads are used.

2. Evaluate Mode

This mode simply evaluates the performance using a set of predefined param-

eters.

3. Search Mode (Less Memory)

This mode behaves similarly to the first mode, but less memory is used.

4. Evaluate Mode (Less Memory)

This mode behaves similarly to the second mode, but less memory is used.

After specifying the mode, it creates threads and objects to analyze and evaluate.
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File Manager

After a directory is provided, the File Manager reads all the text file inside the

directory into memory. Each text file corresponds to one motion sample of one de-

vice, which consists of a time series of the device’s orientation and its timestamps.

Metadata such as device type and recording date and time is encoded in the file-

name. The file is parsed with smoothing into a list of float values, which is called a

HalfRecord since each list refers to a motion sample obtained from one device only.

After all the text files are parsed and stored into the container m rawRecords, the

HalfRecords are combined into SingleRecords using one of the methods below:

1. Match Records

As mentioned in Section 6.2.1, one motion sample from a smartwatch and one

from a smartphone are collected each time. These samples are simply paired

up into a SingleRecord and stored in memory. They are considered True Case

if both devices are used by the same person, otherwise, they are treated as

False Case. Note that if the samples have various lengths, the longer one will

be trimmed.

2. Generate Records

In addition to the SingleRecords matched in the previous method, more False

Cases are generated by combining HalfRecords that are not recorded at the

same time. They are all stored in memory.

3. Generate Pointer Records

Since the number of False Cases generated using the above method increases

exponentially with the number of HalfRecords, which could lead to insufficient

memory when analyzing a large number of samples. This method instead

generate PointerRecords with pointers to the HalfRecords. They are combined

into SingleRecords just before they are being analyzed and evaluated. This

sacrifices speed for reduced memory consumption.

These SingleRecords and PointerRecords can then be retrieved using the functions
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GetRecord() and GetPointerRecord() respectively. These records are read-only,

meaning they can be accessed by multiple threads at the same time.

Solver

The Solver uses a set of predefined evaluation time to calculate the required ro-

tations and exhaustively search for thresholds that maximize the performance. In

detail, the AnalyzeCases() function retrieves all records from the File Manager and

pass them to the SolveRotation() function, which then calculates the time series

of Device Rotation, Basis Transformation, Mean Squared Prediction Error, and

Variance of Basis Transformation using two time series of Device Orientation from

each record and a given set of evaluation time. Each result is then saved inside a

SolvedRotation structure. The SearchOptimalThresholds() function retrieves a list

of SolvedRotation and search for the optimal thresholds by passing the list to the

EvaluateThresholds() function with different sets of thresholds. The set of thresh-

olds with the best performance is regarded as the optimal thresholds. Inside the

EvaluateThresholds() function, each SolvedRotation structure is passed to the Veri-

fyCase function with the given thresholds to determine if it is a valid authentication.

The performance is calculated by counting the number of cases that are accepted

or rejected successfully. In the case where PointerRecoreds are used, instead of

processing in batches, the records are analyzed and evaluated one at a time in the

AnalyzeAndEvaluate() function. This greatly reduces memory consumption as we

do not store the intermediate data.

Exporter

This class simply exports results to a file. In the ExportResult function, the param-

eters and the evaluation metrics are exported to a file. There are also some debug

settings which allow extra information to be exported, such as the performance cor-

responding to each set of parameters used during the search and the minimum MSE

attained for each case.
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6.3 Experiment 1: Determining the Number of Twists

for a TwistIn Gesture

We performed an experiment to determine the number of twists for quantifying a

motion as a TwistIn gesture as described in Chapter 5. Typically, a twist is a back-

and-forth rotation about the forearm (see Figure 6.1), such that it starts with either a

clockwise or anticlockwise rotation and then rotates back to the initial pose. Hence,

having more twists could yield a longer time series with more rotations, thereby

enhancing the gesture detection accuracy. However, the user may feel more tired

and uncomfortable when performing the gesture. Therefore, we should minimize the

number of twists required in a TwistIn gesture, while maintaining the performance

at an acceptable level.

Procedure

To compare the effectiveness of using a different number of twists, we asked the

participants to perform one to five twists and collected the motion samples using

the following procedure:

(i) The TwistIn gesture was introduced to the participant.

(ii) The participant wore the smartwatch on his/her preferred hand tightly and

picked up a smartphone.

(iii) The participant seated on a chair, and was given at least five minutes to try

and practice the TwistIn gesture. We also reminded the participant to prevent

any motion caused by moving the wrist.

(iv) The participant pressed the “Record” button on the smartphone.

(v) After three seconds, the smartphone vibrated, and signaled the start of the

data recording.

(vi) The participant performed the TwistIn gesture with one twist.
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(vii) The participant waited for around one second before pressing the “Complete”

button.

(viii) The participant repeated steps (iv) to (vii) for ten times, and the whole ex-

periment was repeated for four more times but the participant would perform

TwistIn with a different number of twists.

Participants

We conducted the experiment with three participants. All are males aged from 26 to

28 (Mean = 27, SD = 1), and each performed the TwistIn gesture simultaneously on

the two devices (smartphone and smartwatch) for ten times under five settings, i.e.,

one twist to five twists. Therefore, we collected 60 motion samples (3 participants ×

2 devices × 10 times) for each setting. By pairing up the 30 motion samples from the

smartwatch and 30 motion samples for the smartphone, where the two devices were

actually twisted together, we can have 30 positive cases. On the other hand, we can

have 1,740 negative cases formed by pairing up all motion samples and excluding

the 30 positive cases, i.e.,
(
60
2

)
- 30, where

(
60
2

)
= 1, 770. Note that since the motion

sample pairs in the negative cases may not have the same time period (i.e., one

sample could end earlier than the other), we thus look at each motion sample pair,

shift their timestamps, and truncate the longer one, so that motion samples in each

pair start at the same time and have the same time duration; otherwise, the negative

cases will have an extremely low chance to produce the false positives observed in

the results.

Discussion

We used the TwistIn algorithm described in Chapter 5 to analyze the motion sam-

ples for each setting (i.e., one twist to five twists). The TwistIn gesture is detected

by counting the number of twists detailed in Section 5.3.2. The samples are evalu-

ated using the program detailed in Section 6.2.3 and the result is shown in Table 6.1.
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Table 6.1: EER achieved when the devices were twisted for different number of

twists (#Twists).

#Twists N Tbasis Tauth βoverlap βerr βvar TPR FPR FNR TNR EER

1 3 0.30 1.00 0.65 0.035 0.0024 1.0000 0.0276 0.0000 0.9724 0.0138

2 7 0.10 1.20 0.55 0.045 0.0036 1.0000 0.0167 0.0000 0.9833 0.0083

3 11 0.10 1.50 0.55 0.054 0.0059 1.0000 0.0385 0.0000 0.9707 0.0193

4 15 0.10 2.20 0.45 0.047 0.0056 1.0000 0.0230 0.0000 0.9740 0.0115

5 19 0.10 2.30 0.60 0.035 0.0052 1.0000 0.0063 0.0000 0.9937 0.0032

Table 6.2: Effect of prolonged twisting studied by using different N , Tbasis and Tauth

on the data where the participants performed five twists.

#Twists N Tbasis Tauth βoverlap βerr βvar TPR FPR FNR TNR EER

5 3 0.30 1.00 0.50 0.026 0.0028 0.9667 0.1092 0.0333 0.8908 0.0713

5 7 0.10 1.20 0.60 0.030 0.0031 0.9667 0.0391 0.0333 0.9609 0.0362

5 11 0.10 1.50 0.70 0.040 0.0039 1.0000 0.0420 0.0000 0.9570 0.0210

5 15 0.10 2.20 0.55 0.042 0.0035 0.9667 0.0126 0.0333 0.9874 0.0230

5 19 0.10 2.30 0.60 0.035 0.0052 1.0000 0.0063 0.0000 0.9937 0.0032
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From the result, we can see that TwistIn is capable of supporting fast and pretty

accurate authentication with low false positive and false negative rates.

Next, we study the effect of prolonged twisting, meaning that the users perform

excessive twists (#Twists) even the system demands fewer (N). To this end, we

make use of the motion sample data where the users performed five twists, and then

apply our method to detect the TwistIn gesture in these data with smaller “mini-

mally required” N ; see the 1st and 2nd columns in Table 6.2. Since Tauth depends

on N and Tbasis depends on Tauth, we reused the Tauth and Tbasis from the corre-

sponding row in Table 6.1; see the 3rd and 4th columns in Table 6.1 and Table 6.2.

For parameters βoverlap, βerr and βvar listed in Table 6.2, we exhaustively searched

for their values for optimal performance, for each case shown in each row in Ta-

ble 6.2. Using these parameters, we applied our method to detect TwistIn gestures

in the motion samples where the participants performed five twists, and obtained

the results shown in the last five columns in Table 6.2. In the results, we observe a

high FPR (0.1092) for a short evaluation period and a small N when Tauth = 1.0s

and N = 3. This shows that a small Tauth with a small N is vulnerable to attacks

when the devices were twisted for a long period of time. To balance between con-

venience and security, we decided to use two twists as the minimum requirement in

the TwistIn gestures.



CHAPTER 6. PERFORMANCE EVALUATION 50

6.4 Experiment 2: Comparing Performance of Different

Methods

In the second experiment, we evaluated the performance of various methods men-

tioned in previous chapters. This includes a combination of methods used to detect

motion and synchronous rotations.There are three methods that are proposed to

detect motion or the TwistIn gesture: (i) Analyzing q over time (Section 4.4), (ii)

Analyzing ∆q over time (Section 5.3.1), and (iii) Counting the Number of Twists

(Section 5.3.2). There are two methods that are proposed to detect synchronous

rotations, one with rotation decomposition (RD) mentioned in Section 5.4 and the

other without (Section 4.6). The following list shows all the methods that are com-

pared in experiment 2.

1. Analyzing q over time without RD

2. Analyzing ∆q over time without RD

3. Counting the Number of Twists without RD

4. Analyzing q over time with RD

5. Analyzing ∆q over time with RD

6. Counting the Number of Twists with RD

Since all methods are capable of analyzing the TwistIn gestures, we compared the

performance across the methods by evaluating motion samples with users performing

the TwistIn gesture.

Procedure

We introduced and demonstrated the TwistIn gesture to the participants. We also

reminded them to avoid wrist motions while performing the gesture. Then, they

were given an iPhone 6S and an Apple Watch 1, and were asked to wear the watch

tightly and to wear it on the same hand that holds the phone. Next, they were free
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to hold and wear the devices in any location and orientation based on their own

preference. A training session of at least five minutes was given to each of them

to try and get familiar with the TwistIn gesture. After that, each participant was

asked to perform the TwistIn gesture for ten trials under the following five scenarios:

(i) The watch was worn on the wrist of the preferred hand with the phone being

held on the same hand with the screen facing upward. The participant was

then signaled to perform the TwistIn gesture.

(ii) Same as scenario (i), but use the non-preferred hand instead.

(iii) The participant use the preferred hand (with the phone’s screen facing up-

ward), while standing. Again, the participant performed the TwistIn gesture.

(iv) Two participants were paired up. One acted as a normal user with the watch,

while the other acted as an attacker with the phone. Both used the preferred

hand with the devices and were positioned next to each other, so the attacker

can clearly see the normal user and was free to place his/her hand in any

location. Once a signal was given to the normal user, he/she performed the

TwistIn gesture, while the attacker tried to mimic the normal user’s motion

via shoulder surfing.

(v) Scenario (i) was repeated again.

Similar to the previous experiment, the procedure of collecting each motion sample

is as follows:

1. The participant pressed the “Record” button on the smartphone.

2. After three seconds, the smartphone vibrated, signaling the start of the record-

ing.

3. The participant performed the TwistIn gesture by twisting the devices twice

according to the requirements provided for each scenario.
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Table 6.3: Parameters used for methods 1 to 6.

Evaluation Periods Motion/Gesture Detection Authentication

Method Tauth Tbasis βmove βmove’ N βoverlap βerr βvar

1 1.30 0.05 0.0005 – – – 0.0595 0.0200

2 0.55 0.45 – 0.0010 – – 0.0740 0.0214

3 1.60 0.80 – – 7 0.50 0.1025 0.1

4 0.70 0.05 0.0005 – – – 0.0650 0.0218

5 0.75 0.05 – 0.0005 – – 0.0550 0.0244

6 1.20 0.10 – – 7 0.60 0.0601 0.0188

4. The participant waited briefly for a second and then pressed the “Complete”

button.

Participants

We invited 12 participants to Experiment 2, including nine males and three females

aged from 19 to 31 (Mean = 24.75, SD = 3.415). Among them, only one participant

owned a smartwatch; eight preferred to use the right hand to hold the phone while

four preferred left. Note that the preferred hand is not necessarily the dominant

hand.

Each participant performed the TwistIn gesture simultaneously on two devices for

ten times for the above five different scenarios. We collected a total of 1200 motion

samples (12 participants × 2 devices × 10 times × 5 scenarios), with 600 samples

from the watch and 600 samples from the phone. There are 480 positive cases (for

scenarios 1, 2, 3 and 5) consisted of samples where the two devices were twisted

together by the same participant, and there are 120 negative cases for samples from

scenario 4.
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Table 6.4: Performance obtained for each scenario using method 1 to 6. Note

that scenarios 1, 2, 3 and 5 consisted of positive cases while scenario 4 consisted of

negative cases only. Therefore, the rates displayed in the table are TPR for scenarios

1, 2, 3 and 5 and TNR for scenario 4.

Scenario
Method

1 2 3 4 5 6

(i) Sitting (w/ preferred hand) 0.7917 0.7500 0.5917 0.8750 0.8417 0.9833

(ii) Sitting (w/ non-preferred hand) 0.8333 0.7417 0.3333 0.9500 0.9583 0.9750

(iii) Standing (w/ preferred hand) 0.7750 0.7667 0.3500 0.9417 0.9417 0.9833

(vi) Attacking (w/ preferred hand) 0.8333 0.8583 0.9083 0.8750 0.9250 0.9417

(v) Sitting (w/ preferred hand) 0.8667 0.9333 0.3750 0.9750 0.9750 0.9917

Overall 0.8200 0.8100 0.5117 0.9233 0.9283 0.9750

Discussion

We evaluated the motion samples from each scenario with each method using the

empirical parameters shown in Table 6.3. We then calculated the evaluation metrics

(see Section 6.2.2) and tabulated the results in Table 6.4. Since scenarios 1, 2, 3 and

5 only consist of true cases while scenario 4 consists of false cases, only the TPR for

scenarios 1, 2, 3 and 5 and TNR for scenario 4 is shown in the table respectively.

From the overall performance of each method, applying Twist Decomposition and

Counting Number of Twists performed the best, i.e., method 6 performs the best,

with both TPR and TNR the highest. While method 3 performs poorly with its

low TPR, its TNR is higher than method 1 and 2. This shows that Counting the

Number of Twists is superior in defending against attacks attempts. A general im-

provement in methods 4 to 6 from methods 1 to 3 suggests that applying rotation

decomposition to filter out unwanted rotations results in a better performance.

Then, we compared the performance across scenarios. First, we compared the effect

of using the preferred hand and the non-preferred hand. A slight improvement in
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TPR is observed in methods 1, 4, 5 but a decline in performance for methods 2, 3,

and 6 is recorded. The insignificant differences between scenarios 1 and 2 suggested

that authenticating using the preferred hand or the non-preferred hand resulted

in similar performance, even though some participants mentioned and informed us

that it was more difficult and less convenient to twist with the non-preferred hand.

Second, we compared the effect of sitting and standing while performing the authen-

tication. Similarly, mixed performance is obtained, indicating there is no significant

difference between sitting and standing. Indeed, no participants reported any dif-

ference between the scenarios. On the other hand, there was a general improvement

reported in scenario 5 when compared to scenario 1. This indicates the possibility

of a learning trend, where the participants have learned to perform the TwistIn

gesture. In scenario 4, we recorded a high TNR (i.e., a low FPR), especially in

method 6. This showed that it was difficult to mimic other’s TwistIn gesture. Still,

a few attack attempts were successfully carried out by some of the participants. In

particular, the attacker had a clear view of the phone and received the starting sig-

nal at the same time as the normal user. Moreover, the attacker also had ten trials

of attacks. All these conditions were hard to fulfill without being noticed by the

normal user. Therefore, we believe that the attack will be much harder in normal

circumstances.
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6.5 Experiment 3: Challenging Scenarios

In the last experiment, we additionally evaluated the performance of the proposed

methods under five different challenging scenarios. Particularly, we considered all

combinations of motion samples (across scenarios) that were not twisted together

as negative cases.

Participants

We invited five participants who had participated in the second experiment. Each

participant performed the TwistIn gesture simultaneously on the two devices for

ten times under each of the five scenarios; see below. We collected a total of 500

motion samples (5 participants × 2 devices × 10 times × 5 scenarios), with 250

samples from the smartwatch and 250 samples from the smartphone. Therefore,

there are 250 positive cases, which consist of motion sample pairs that were twisted

together. Since we have collected 2,000 motion samples from experiments 1 to 3, we

could further treat all combinations of the samples that were not twisted together as

negative cases. Therefore, we have 1,998,000 negative cases, which is
(
2000
2

)
- 1,000.

Procedure

We consider the following five different challenging scenarios:

(i) The participant holds the smartphone while walking back and forth, and per-

forms the TwistIn gesture.

(ii) The participant holds the smartphone while jogging back and forth, and per-

forms the TwistIn gesture.

(iii) The smartphone is placed on a desk. The participant sits on a chair next to

it, and then picks up the smartphone while performing the TwistIn gesture.

(iv) The smartphone is placed in the pocket of the participant’s trouser while

the participant is standing. The participant takes out the smartphone and
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Table 6.5: Performance obtained by applying the parameters in Table 6.3 using

method 1 to 6 for the following scenarios.

Scenario
Method

1 2 3 4 5 6

(i) Walking 0.9000 0.9200 0.4400 0.8600 0.8600 0.6800

(ii) jogging 0.8400 0.9200 0.7400 0.5600 0.5800 0.5000

(iii) Picking up from desk 0.8800 0.9000 0.6400 0.9000 0.9600 0.8600

(vi) Taking out from pocket 0.7400 0.8200 0.7600 0.7400 0.7400 0.7400

(v) On a bus trip 0.7400 0.6800 0.600 0.8600 0.9200 0.9600

Overall 0.8200 0.8480 0.6360 0.7840 0.8120 0.7480

Table 6.6: TNR and FPR evaluated with method 1 to 6 using motion samples from

experiments 1 to 3. We considered all combinations of motion samples that were

not twisted together as negative cases, so we considered 1,998,000 negative cases

altogether.

1 2 3 4 5 6

TNR 0.8773 0.9214 0.9493 0.8940 0.9267 0.9852

FPR 0.1227 0.0786 0.0507 0.1060 0.0733 0.0148

performs the TwistIn gesture at the same time.

(v) The participant holds the smartphone, while sitting inside a shuttle bus, whose

route includes uphills, downhills, and turns. The participant performs the

TwistIn gesture only when the bus is moving.

Note that we do not provide training sessions to the participants, as they had joined

the second experiment and were familiar with the TwistIn gesture. Moreover, the

participants used their preferred hand for all the scenarios.
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Figure 6.5: Plotting the device rotations in various scenarios. (a) is obtained from

scenario 1 in Experiment 2, while (b)-(f) are obtained from scenarios 1 to 5 in

Experiment 3, respectively. Note that in all figures, x-axes denote the time and

y-axes denote the value of the xyzw-components in the quaternion samples.

Discussion

Similar to the previous experiments, we calculated the TPR, FPR, FNR, and TNR

to evaluate our method’s performance as in Section 6.2.2. We used the parameters

listed in Table 6.3 to evaluate each method under each scenario and the result is

tabulated in Table 6.5. The same parameters were also used to analyze the negative

cases formed by pairing up all motion samples that were not twisted together, and

the result is shown in Table 6.6. In general, the result of Experiment 3 has lower

performance than Experiment 2. It is because in Experiment 2, the participant sat

on a chair and held the phone on hand just before performing the TwistIn gesture.

However, in Experiment 3, one common factor across the five scenarios is that they

all include additional motions with extra rotations, when the user performs the

TwistIn gesture, e.g., while walking, while picking up the phone from the trouser

pocket, etc.

• In scenario 1, the participants performed the TwistIn gesture while moving

around and making turns, which involve two different types of rotations. Ob-
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viously, both devices rotated severely when the participants moved around

and made turns. Also, due to the gravity acted on the smartphone, it was

easy to move the wrist at the moment when the leg struck the ground. From

Figure 6.5(b) and (c), some additional rotations can be observed in motions

for the smartphone but not for the smartwatch.

• In scenarios 3 and 4, the smartphone was picked up from the desk and taken

out from the trouser pocket, respectively. These actions will introduce addi-

tional rotations caused by the hinge joint.

• In scenario 5, the participants were on a bus, and they were allowed to perform

the TwistIn gesture only when the bus was moving. Hence, extra rotations

were introduced to the motion data when the bus made turns, went uphill,

and went downhill.

While all five scenarios involve additional rotations, we could rank them in terms of

the rotation magnitude. The bus produced the least rotations as it did not make a

fast turn. Then, picking up the smartphone from the desk normally involves rota-

tions of around 30 degrees. Taking the smartphone out from the trouser pocket and

holding it up involves rotations of around 100 degrees. Making turns while walking

and jogging could involve rotations as large as 180 degrees. On top of that, jogging

suffers more from the extra rotations when the leg strikes the ground than walking.

This somehow matches the results for methods 4 to 6, where the participants per-

formed better in scenario 3 and 5, and performed poorly in scenario 2 and 4. This

is because the presence of an external rotation with a magnitude comparable to the

twist rotation directly affects the performance of rotation decomposition as men-

tioned in Section 5.6. Hence, the calculated basis transformation is affected, which

results in higher mean squared prediction error. On the other hand, methods 1 to

2 outperforms other methods because the rotation decomposition technique is not

used, which The basis transformation is directly calculated using the obtained rota-
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tion data. As long as the external rotation is present in both devices, the calculation

of the basis transformation will not be affected.

Finally, the results in Table 6.6 shows that method 6 performed the best with

an FPR as low as 0.0148. Indeed, counting the number of twists could effectively

minimize the chance of unauthorized access, which is reflected by the low FPR for

methods 3 and 6. On the contrary, simply checking if the devices are in motion or

not yields the worst performance as shown in method 1 and 4, with method 1’s FPR

being 0.1227.
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Table 6.7: Distribution of the participants’ physical measurements.

Variable (cm) Mean S-D Min. Max.

Hand Length 18.75 1.422 17 21

Hand Span 20.05 1.735 17 23

Hand Circumference 19.17 1.337 17 22

Wrist Size 15.54 1.157 14 17

Minimum Devices Distance 6.583 2.466 4 11

6.6 Evaluating Usability

The usability of the proposed method is evaluated by conducting a user study right

after experiment 2 in Section 6.4. The same batch of participants in experiment 2

were asked eight questions concerning their subjective ratings on our method. In

detail, each of them was asked to rate on a scale between -5 and +5, with +5 being

strongly agree and -5 being strongly disagree. Additionally, we asked for any other

feedback and comment towards our method. The eight questions were listed in Ta-

ble 6.8.

We also measured the participants’ hand length, hand span, hand circumference,

wrist size, and the minimum distance from the smartphone to the smartwatch to

check if the physical differences and the choice of wearing positions affect the perfor-

mance. Note that the hand length was measured from the top of the middle finger to

the base of the palm. The hand span was measured as the maximum distance from

the thumb to the pinkie finger while stretching the hand. The hand circumference

was measured around the meat of the hand, from where the pointer finger meets

the palm to where the little finger meets the palm. The TPR and TNR each par-

ticipant achieved overall in experiment 2 is plotted in Figure 6.6a and Figure 6.6b

respectively.
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(a) True positive rate of each participant achieved for methods 1 to 6. This refers to the

success rate of authenticating the smartphone in scenarios 1, 2, 3, and 5 combined.
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(b) True negative rate of each participant achieved for methods 1 to 6. This refers to the

success rate of defending against attacks in scenario 4.

Figure 6.6: Performance of each participant achieved for methods 1 to 6.
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(a) Tests for statistical significance using true positive rate.

Method (True Positive Rate)

1 2 3 4 5 6

Linear Regression

R2 0.7880 0.3012 0.4748 0.0692 0.2157 0.4397

adjusted R2 0.6113 -0.2811 0.0372 -0.7064 -0.4379 -0.0272

Hand Length 0.3049 0.7953 0.6257 0.7634 0.5814 0.7247

Hand Span 0.4388 0.9607 0.7601 0.9416 0.9289 0.8721

Hand Circumference 0.0115 0.2669 0.7512 0.9856 0.4451 0.2175

Wrist Size 0.2020 0.7146 0.8723 0.7211 0.5663 0.5729

Minimum Devices Distance 0.2374 0.5775 0.1396 0.6254 0.7010 0.3253

T-Test

Preferred-hand 0.2870 0.5979 0.8962 0.6257 0.9414 0.0331

(b) Tests for statistical significance using true negative rate

Method (True Negative Rate)

1 2 3 4 5 6

Linear Regression

R2 0.5585 0.5738 0.4069 0.5337 0.2226 0.4013

adjusted R2 0.1906 0.2186 -0.0874 0.1451 -0.4252 -0.0975

Hand Length 0.4850 0.4889 0.1019 0.5168 0.5913 0.7671

Hand Span 0.5897 0.3895 0.1928 0.3712 0.4258 0.5507

Hand Circumference 0.5219 0.1413 0.4068 0.2257 0.7185 0.6013

Wrist Size 0.7587 0.0859 0.2456 0.0617 0.3249 0.7007

Minimum Devices Distance 0.3094 0.8358 0.3323 0.4384 0.7510 0.7956

T-Test

Preferred-hand 0.5704 0.3246 0.3578 0.4313 0.5178 0.3604

Figure 6.7: The p-value calculated by running linear regressions on the participants’

measurements with their performances and performing t-tests to determine if there

are significant differences between participants who preferred the right hand and

those who preferred the left hand.
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6.6.1 Correlation between Performance and User Preference

We analyzed the performance statistically to study if there were any correlation

between performance and the user preference. First, we looked for differences be-

tween participants who preferred the left hand and participants who preferred the

right hand. We performed a t-test using their TPR and TNR; see Table 6.7a and

Table 6.7b respectively. The p-values for TNR of methods 1 to 6 were higher than

0.05, meaning that the preference of the preferred hand did not affect the TNR. On

the other hand, the p-values for TPR of methods 1 to 5 were also higher than 0.05,

except method 6’s, which was 0.0331. This suggested that the preference of the

preferred hand could affect the performance of TwistIn. A closer look at the results

also reveals that the participants who preferred to use their left hand had successful

authentications in all of the trials without failing. However, the accuracy of the

test was affected by the small sample size. We can perform a larger study involving

more participants to better understand the effect of the preferred hand in the future.

Second, we study the effect of the smartwatch’s wearing position. Since the smart-

phone is always held by the hand but the smartwatch can be worn at different

locations on the forearm, we used the minimum device distance to represent the

smartwatch’s position. We performed a linear regression on the Minimum Devices

Distance with the participants’ individual TPR and TNR; again, see Table 6.7a

and Table 6.7b respectively. Since the p-values for all methods were greater than

0.05, we rejected the null hypothesis and concluded that there was no significant

correlation between the smartwatch’s wearing position and the performance.

Third, we originally planned to see if the wearing orientation of the smartwatch and

the holding orientation of the smartphone have any effect on the performance. How-

ever, all participants decided to use the same orientation for both devices. Hence,

we cannot perform this analysis, which would require a larger scale study.
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Lastly, we tried to study the effect of the initial twisting direction to the perfor-

mance. But we noticed that if the smartphone was held facing upward initially,

the initial twisting direction was always toward inwards, i.e., if the smartphone was

held by the right hand, the monitor would point to the left, and if the smartphone

was held by the left hand, the monitor would point to the right. Hence, it was

impossible to twist in the opposite direction due to the ergonomics of the human

forearm. Therefore, it is not an option in the TwistIn gesture.

6.6.2 Correlation between Performance and Physical Differences

To find out if the physical differences affect the performance, we measured the hand

size and the wrist size of the participants. We then performed linear regression

with the participants’ individual TPR and TNR, and obtained the results tabulated

in Table 6.7a and Table 6.7b respectively. Most of the p-values are greater than

0.05, and we can reject the null hypothesis for those cases. However, the p-value

obtained using method 1’s TPR and the hand circumference is 0.0115, which is

lower than 0.05. This suggests the existence of a correlation between the hand

circumference with the performance; since a bigger hand can grab a device more

tightly and stable. However, the result could also be affected by the small sample

size. Therefore, a more comprehensive user study should be performed with a larger

population before we draw any conclusion. Right now, we cannot conclude if the

participants’ performances had any correlation with their physical differences.

6.6.3 Feedback from participants

We interviewed the participants to rate our method and compare with others. The

results are tabulated in Table 6.8, which shows that the participants favored our

method over password (Mean = 3.5, SD = 1), PIN (Mean = 2.7, SD = 2.1) and

swipe pattern (Mean = 3.1, SD = 1.7). In particular, the participants favored our

method mostly because it does not require memory recall. They also mentioned

that the three methods are vulnerable against shoulder surfing and smudge attack,
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Table 6.8: Questions and responses of the interview on the scale of -5 (being strongly

disagree) to +5 (being strongly agree).

Question Mean S-D Min. Max.

I like to log into a computer by performing the

TwistIn gestures on a mouse more than typing your

username and password on a keyboard.

3.5 1 2 5

I like to log into a smartphone by performing the

TwistIn gestures more than entering a PIN.

2.7 2.1 -1 5

I like to log into a smartphone by performing the

TwistIn gestures more than drawing a Swipe Pat-

tern.

3.1 1.7 -1 5

I like to log into a smartphone by performing the

TwistIn gestures more than using Fingerprint Au-

thentication.

-2 2.4 -5 2

I like to log into a smartphone by performing the

TwistIn gestures more than shaking the smartphone

continuously for 2s (i.e., ShakeUnlock).

4.3 0.9 3 5

I like to log into a smartglasses (e.g., Google Glass)

by performing the TwistIn gestures more than en-

tering a combination of four gestures at the touch-

pad.

3.3 2.1 -2 5

I like to access an IoT device by performing the

TwistIn gestures and using the smartwatch’s inter-

face to control more than searching for the corre-

sponding application on a smartphone and using it

to control the device.

0.7 3.1 -4 5

Overall, I enjoy using TwistIn to log in and access

devices.

2.8 1.1 0 4
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which are less secure compared to ours. ShakeUnlock (Mean = 4.3, SD = 0.9) was

not preferred by the participants as more effort is needed to shake continuously for

2s compared to our TwistIn gesture, which can be done in less than 1.2s.

On the contrary, participants preferred fingerprint recognition (Mean = -2, SD =

2.4) because it is faster and more straightforward than our method. However, one

participant pointed out that our method allows authentication with multiple users

(e.g., Apple’s TouchID can only recognize five fingerprints), which could be more

useful in some situations. Moreover, some participants mentioned that fingerprint

recognition does not work for wet/dirty fingers. In addition, our method requires

no external hardware menu and buttons on the device’s surface. This suggests our

method can complement with fingerprint recognition.

Wearable devices are small and are usually equipped with minimal interfaces. These

devices cannot be authenticated with PINs or Swipe Patterns if they do not have

a keypad or a touchscreen. For example, Google Glass uses a combination of tap

and swipe gestures on the touchpad to authenticate, which is slow and troublesome.

On the other hand, our method allows users to simply pick up the smartglasses,

perform the TwistIn gesture, and use it. Therefore, our method was highly rated

when we compared with Google Glass (Mean = 3.3, SD = 2.1).

Traditionally, people connect to smart devices through smartphone applications.

This allows us to use the smartphone interface to remotely access and control the

devices. However, if a small device is close to the user, it can be picked up and logged

in using the TwistIn gesture. The smartwatch’s interface can then be immediately

used to access the device. This saves the time for searching for the corresponding

app on the smartphone. Mixed responses (Mean = 0.7, SD = 3.1) were received as

some participants did not like the idea of having to physically move and pick up the

device, while some participants liked to physically engage with the device and use
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it because they felt that the interaction is more natural.

6.7 Conclusion

The performance of the presented methods is evaluated in terms of accuracy and

usability. The final proposed method achieved state-of-the-art performance. The

user study also shows our method is preferred over many other existing methods.

While it cannot outperform fingerprint recognition, our method is still superior in

a number of circumstances, such as when the hands are dirty where fingerprint

recognition would fail. In the next and final chapter, we conclude this thesis with a

discussion limitation and future work of this study.

2 End of chapter.



Chapter 7

Conclusion

This thesis aims at exploring the application of a smartwatch as an authentication

token to tangibly gain quick access to other smart devices in a multi-user multi-

devices environment. In particular, a gesture is introduced to facilitate the process.

While this method achieves good performance in both accuracy and usability, there

are still some limitations that yet has to be overcome. In this final chapter, the

limitation and future works are discussed.

Limitation and Future Works

As we implemented and tested TwistIn, we noticed some limitations in our method

and experiment design that can be improved. First, while we have collected over

2,000 motion samples, our experiment result is still affected by the small sample size.

In addition, we only used two devices in the experiments. However, the difference

in size and shape may also affect our method’s performance. We plan to perform a

more comprehensive study with more participants and more different devices.

Second, as shown in Experiment 3, our method has lower performance when the

user performs TwistIn while doing other activities at the same time. We plan to

explore the use of deep learning in analyzing the motion data. To train a network

capable of performing authentication in a short time frame, we have to extract re-

68
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gions of interest from the collected motion samples. One possible way is to run our

proposed algorithm and locate the segment with the minimum MSE in each pair

of motion samples for both positive cases and negative cases. These segments are

used to train a network for authentication with a mix of convolutional neural net-

works and recurrent neural networks to generate a feature vector for each motion

sample, and then minimize/maximize the distance between the pair of vectors for

the positive/negative cases. To verify the accuracy of the authentication network,

we can feed successive segments of each pair of motion samples into the network.

The network should be able to identify valid authentication attempt in at least one

of the segments for a positive case, but none in a negtive case. We believe this

approach could achieve a better performance in both experiments 2 and 3.

Third, our current method considers only the motion data in the authentication

process. In fact, we can incorporate other metrics. For example, we may include

proximity-based detection, so that people far away cannot gain unauthorized access

to the smart devices. In addition, we may consider of incorporating biometrics such

as the twisting frequency and magnitude into the algorithm. We have to analyze if

these biometrics are unique from person to person and is always consistent with the

same person at all times.

Fourth, we plan to investigate the hardware and software implementation to make

use of TwistIn for IoT devices, e.g., game controllers, so that players can imme-

diately join in a game simply by twisting the game controller. More importantly,

the player’s profile and preference can then be loaded automatically to provide an

instantaneous customized experience. This also matches the real-life situation that

most game controllers such as PlayStation 4 Controller and Xbox One Controller

do not have a touchscreen. Therefore, the TwistIn also facilitate fast access and

login, as well as personalization for the game player. Another example is a smart

wallet with RFID support which can be used for touchless transactions. It can be
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enabled only a TwistIn authentication is performed, effectively protecting against

RFID skimming.

Lastly, our ultimate goal is to completely remove the TwistIn gesture so that the

device can be authenticated immediately right after it is picked up by the user. It

is an ambitious target which has two challenging problems that have to be tackled.

One problem is to classify the user’s intention; whether the user intends to access

the device or not. Currently, we asked the user to use the TwistIn gesture to specific

their intention to use the device. Without the gesture, we need to design another

way to distinguish if the user is really picking up the device to use, or it is just some

random movements caused by activities such as walking. We will explore the use

of machine learning approaches on this matter. The second problem is to create

a one-to-one correspondent for the smartwatch and the device in a situation when

many users are picking up devices at the same time (i.e., in a multi-user multi-device

environment). As shown in our result, a pure synchronous rotation detection results

in an unacceptable false positive rate. Inspired by Gierad’s work [31], we plan to

use a high frequent AHRS sensor to capture features within a user’s motion. We

believe these features can be utilized to construct the correspondent.

Conclusion

In this thesis, we introduce the TwistIn gesture to tangibly authenticate devices

using a smartwatch. We observe that two devices share the same rotation when

they are interacted using a single hand, but the difference in reference frame causes

divergent results. To find the transformation between the reference frames, we use

an optimization to solve for the basis transformation. We also notice that there is a

discrepancy in the two motions when one of the devices is strapped on the forearm

and the other is being held in hand. To minimize the impact caused by the discrep-

ancy, we reformulated the optimization by incorporating rotation decomposition to

filter out unwanted rotation components. Furthermore, by analyzing the turning
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points and the variation of basis transformations over time, we designed and devel-

oped an algorithm for detecting synchronous TwistIn gesture among multiple smart

devices. The algorithm was implemented into a prototyping iOS Application, and

we evaluated its performance with 12 participants under 5 different scenarios, and

collected 1200 motion samples. Our evaluation with the prototype system reports

that the true positive and true negative rates are only 0.9417 and 0.9833 (see Ta-

ble 6.4), suggesting that this method can be efficiently adopted in small devices for

allowing fast access to the devices.

Publication Related to this Work

Leung, H. M. C., Fu, C. W., and Heng, P. A. (2018). TwistIn: Tangible Authenti-

cation of Smart Devices via Motion Co-analysis with a Smartwatch. In Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume

2, Issue 2, Article 72. Presented in UbiComp 2018.

2 End of chapter.



Bibliography

[1] R. Amadeo. Meet google’s “eddystone” - a flexible, open source ibeacon fighter:

The ars technica review, 2015. [Online; accessed 17-April-2018].

[2] D. Amitay. Most common iphone passcodes. Retrieved June, 15:2011, 2011.

[3] I. Apple. About ibeacon on your iphone, ipad, and ipod touch, 2017. [Online;

accessed 17-April-2018].

[4] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith. Smudge

attacks on smartphone touch screens. Woot, 10:1–7, 2010.

[5] N. Ben-Asher, N. Kirschnick, H. Sieger, J. Meyer, A. Ben-Oved, and S. Möller.
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