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Diabetes affects millions in the US, causing elevated blood glucose levels that could lead to 
complications like kidney failure and heart disease. Recent development of continuous glucose 
monitors has enabled a minimally invasive option, but the discomfort and social factors highlight the 
need for noninvasive alternatives in diabetes management. We propose a portable noninvasive glucose 
sensing system based on the glucose’s optical activity property which rotates linearly polarized light 
depending on its concentration level. To enable a portable form factor, a light trap mechanism is used 
to capture unwanted specular reflection from the palm and the enclosure itself. We fabricate four 
sensing prototypes and conduct a 363-day multi-session clinical evaluation in real-world settings. 30 
participants are provided with a prototype for a 5-day home monitoring study, collecting on average 
8 data points per day. We identify the error caused by differences between the sensing boxes and the 
participants’ improper usage. We utilize a machine learning pipeline together with Bayesian Ridge 
Regressor models and multiple-step data processing techniques to deal with the noisy data. Over 95% 
of the predictions fall within Zone A (clinically accurate) or B (clinically acceptable) of the Consensus 
Error Grid with a 0.24 mean absolute relative differences.

Diabetes is a chronic health condition that is currently affecting 38.4 million of people in the United States and 
the trend is increasing1. People with diabetes (PwD) often produce insufficient insulin, resulting in elevated 
blood glucose levels. Prolonged periods of high blood glucose level could damage the blood vessels which leads 
to complications such as kidney failure, heart disease, and stroke2. While intensive insulin treatment could 
reduce the risk of these complications as demonstrated in the landmark Diabetes Control and Complications 
Trial3, it also increases the frequency of lower than normal blood glucose level, potentially causing cognitive 
impairment and seizures4. Given the lack of a cure for diabetes, it is essential for PwD to regularly monitor and 
manage their blood glucose level.

Blood glucose level is traditionally measured by pricking the fingertip to obtain a blood sample, which is then 
analyzed with a glucometer using an enzymatic test strip5. While accurate and effective for home monitoring, 
this method is invasive and inconvenient for PwD. Conversely, recent development has enabled a minimally 
invasive continuous glucose monitor (CGM) that reports blood glucose level regularly6. The device involves the 
insertion of a thin but flexible enzymatic sensor into the outer layer of the skin and is capable of measuring the 
glucose concentration typically for 7-14 days. However, discomfort from sensor insertion, potential bacterial 
infection7, the physical and psychological burden of having it visibly attached, and the high financial burden of 
having the sensors replaced regularly have led to a relatively low adoption rate, underlining the necessity for a 
completely noninvasive approach8.

Previous research has explored glucose sensing either directly or indirectly. Direct approaches involve 
studying the glucose present in biological fluids such as interstitial fluid9–13, sweat14–16, tears17–19, and saliva20,21. 
These fluids are more accessible compared to blood, and their glucose concentration correlates with the blood 
glucose closely, making them of great interest to the noninvasive glucose sensing community22. Various 
techniques, including optical9–12,23–26 and transdermal27–29, are employed. Optical methods primarily exploit the 
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selective absorption properties of the spectrum to estimate blood glucose level. However, the limited penetration 
depth of light 30 and the overlapping absorption spectrum of other confounding substances 31 have impeded the 
development of a noninvasive system. Transdermal methods require the extraction of body fluids to the skin’s 
surface using either a small current27,28 or an electromagnetic field29, and analyzing the fluids with conventional 
enzymatic glucose sensors. However, it takes time to extract enough fluid for measurement, leading to skin 
irritation from prolonged application of electric current to the skin. In contrast, indirect approaches infer 
blood glucose level from physiological signals or tissue properties. For instance, photoplethysmography (PPG) 
signals are used to predict blood glucose level by observing changes in blood viscosity caused by varying glucose 
concentrations32–35. However, confounding factors such as the concentration of red blood cells and plasma 
protein also affect blood viscosity36. Additionally, the signal is typically analyzed with deep learning models, 
and hence, the relationship between PPG signal and blood glucose level is not well-studied. Another example is 
bioimpedance spectroscopy, where alternating currents of various frequencies are applied to the skin to measure 
bioimpedances37,38 and dielectric properties39–41. However, confounding factors such as body composition 
and hydration level, along with the insensitivity to changes in blood glucose level, result in unsatisfactory 
performance42.

In this work, we propose a portable system for sensing glucose level noninvasively (Fig.  1). Our system 
comprises three components: the sensing box (Fig.  1c), a smartphone application (Fig.  1b), and a glucose 
level estimation pipeline (Fig.  1e). It harnesses the optical activity of glucose molecules to predict glucose 
concentration  43. In essence, as glucose rotates the plane of polarization when linearly polarized light passes 
through it due to its optical activity, our system measures the optical rotation related to the glucose concentration 
in the skin using an optical polarimetry technique and infers the glucose level. Prior studies have explored 

Fig. 1.  System overview. (a) Palm’s placement on the device. (b) Screenshot of Smartphone Application. (c) 
Sensing Box schematic. (d) Cross-section of the Sensing Box. (e) End-to-end glucose level estimation pipeline.
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polarization-based approaches for glucose level inference by probing the aqueous humor in the eye44,45, but 
mounting the system to the eye is impractical and inconvenient.

Our method is inspired by the polarimetry-based technique introduced by Li et al.13. While their system 
shows promising results, the sensing prototype is much larger, making it non-portable and inconvenient to carry 
around. Using demographics to infer skin tone may be sub-optimal as it only describes skin tones discretely. 
Finally, the lack of a clinical study across multiple days further limits its verifiability. Here, our goal is to develop 
a portable, miniaturized version of the prototype, extract features from palm images for skin tone analysis, and 
conduct a home monitoring clinical study where data is collected from PwD over time. The smaller form factor 
of the prototype poses an additional challenge of preventing light reflected from the skin from blinding the 
optical sensor, which we address by utilizing an optical light trap design.

To evaluate the system’s performance in a real-world scenario, we conduct a 363-day clinical study in the wild 
where the participants take the device with them for home monitoring. This is particularly challenging as user 
may use the prototype improperly, which is reflected in the high noise level in the dataset, unlike most of the 
previous work9,10,12,13,23,32 which are conducted in a lab settings. We handle the noisy data by identifying these 
improper cases and removing them from the dataset using both statistical and machine learning approaches. 
Over 95% of the predictions all in either Zone A (clinically accurate) or B (clinically acceptable) of the Consensus 
Error Grid with 0.24 mean absolute relative differences.

To summarize, our proposed system offers the following contributions: 

	1.	� A portable device capable of noninvasive gluocse level sensing.
	2.	� A light trap mechanism to reduce specular reflection from saturating the optical sensor
	3.	� An image feature extraction process for handling skin tone variation.
	4.	� A glucose level estimation pipeline with improper use case detection.
	5.	� A multi-day multi-session home monitoring evaluation demonstrating the effectiveness of our proposed 

solution.

Result
Sensing concept
Our system utilizes the optical activity displayed by glucose molecules and predicts glucose level by measuring 
the optical rotation induced by glucose molecules in the skin 43. Essentially, the inherent chirality of glucose 
prompts its optical activity, resulting in the rotation of linearly polarized light directly proportional to the glucose 
concentration. This rotation is commonly measured through polarimetry techniques, where light passes through 
the first polarizer to become linearly polarized, interacts with glucose, passes through the second polarizer, and 
reaches the light sensor as depicted in Fig. 2a.

The intensity of the light reaching the sensor is proportional to the concentration of glucose. However, in 
practice, the highly scattering and absorptive properties of the skin pose a significant challenge46. In Fig. 2b, 
when linearly polarized light is directed toward the skin, most of the light is either absorbed (53%) or scattered 
(40%) in the skin. Subsequently, the remaining 5% of the light is specularly reflected, which could easily blind 
and saturate the sensor, leaving only 2% of the light still carrying useful polarization information. Therefore, 
to extract the polarization information, we must effectively mitigate the effects caused by scattered light and 
specular reflection.

For scattered light, we employ a setup similar to a simple polarimetry technique in Fig. 2a, but the incident 
light is positioned at a 45◦ angle and modulated by a liquid crystal, thereby probing the skin with light of two 
polarization directions. Then, using a similar but different algorithm described in13, we can cancel out the effects 
caused by scattered light and retrieve the polarization information. Regarding specular reflection, we design a 
light trap mechanism to capture the specular light as shown in Fig. 1d. The specular light reflects away from the 
skin and enters the light trap, which is coated with light-absorbing material. As the light bounces around inside 
the light trap multiple times, it is sufficiently absorbed by the coating, effectively minimizing leakage from the 
light trap back to the sensing element. These two techniques allow us to extract the polarization information. 
Additionally, we collect the user’s demographics and the image of the user’s palm to handle diverse populations 

Fig. 2.  System concept. (a) A basic polarimetry setup to measure optical rotation caused by glucose. (b) 
Interaction of polarized light with the human skin.
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and skin variations. The features of the palm images are extracted by analyzing the image under various color 
and texture spaces. These three types of data are joint together to form the basis of the input to the machine 
learning model.

A machine learning pipeline is employed to predict the glucose level (Fig. 1e). Initially, improper usage is 
detected using a classifier trained on a use case dataset, which includes both proper and improper use cases. 
Then, the dimensionality of the input data is reduced via unsupervised Principal Component Analysis (PCA) 47 
and supervised XGBoost 48 feature importance selection. Lastly, we conduct stratified training by grouping data 
points from sensing boxes 1 and 2 to one group, and those from sensing boxes 3 and 4 into another. A Bayesian 
Ridge Regressor is separately trained for each group, with the respective regressor utilized during inference. 
Details of the whole system are provided in the Methods Section.

Sensing box design and usage
The noninvasive glucose sensing system consists of two components: a sensing box and a smartphone 
application. The compact sensing box measures 8cm × 7.5cm × 3.5cm, making it portable and convenient 
to carry (Fig. 1c). The sensing box comes with a smartphone application, which controls the sensing box and 
retrieves the sensor readings via Bluetooth (Fig. 1b).

To initiate the sensing procedure, the user first inputs their demographics into the smartphone application, 
including age, gender, race, ethnicity, and type of diabetes. Subsequently, the user captures a picture of their palm. 
They are given an option to save the information locally on the phone for future procedures. Upon confirming 
the correctness of the data, the application will instruct the sensing box to begin the sensing procedure and guide 
the user through the following steps: 

	1.	� Establishing a connection with the sensing box.
	2.	� Placing the palm onto the sensing area.
	3.	� Initiating the sensing sequence, where the sensing box begins to collect sensor readings.
	4.	� Prompting the user to remove their palm.
	5.	� Taking a measurement of their glucose level using the CGM and entering the value, CGM model, and trend 

arrows to the application.

The whole sensing procedure takes around 1 minute. After that, the user’s demographics and sensor readings are 
uploaded to a database for future analysis.

Glucose level estimation performance
We collaborated with the Barbara Davis Center for Diabetes at University of Colorado Anschutz Medical Campus 
to conduct a clinical study on PwD, following approval from the Institutional Review Board. Participants were 
provided with sensing boxes for home monitoring during the study period. They were advised to perform data 
collection procedures eight times a day: upon waking up, before and after each meal, and before bed. Our dataset 
contains 962 data points from 22 participants. The study protocol, the participant demographics, and dataset 
preprocessing are detailed in the Method Section.

Evaluation metric
We evaluate the system’s performance using the reference glucose values retrieved from the CGM and plot the 
results on a Consensus Error Grid (CEG)49 (Fig. 3). The choice of CGM based on two key factors: (1) it provides 
a more suitable ground truth than fingerstick tests as they are both measuring glucose at the interstitial fluid 

Fig. 3.  The predicted glucose values generated using three random seeds are plotted against the reference 
glucose values onto three CEGs. The points in green are predictions that fall in Zone A, which are considered 
clinically accurate. The points in blue are those in Zone B, which are clinically acceptable. The predictions 
that fall into Zone C are marked as purple, which predicted a higher or lower glucose value with respect to 
the reference value. The percentage of predictions that fall into Zone A or B are 95.29%, 95.14%, and 95.29%, 
respectively. Conversely, 4.71%, 4.86%, and 4.71% of predictions fall into Zone C. There are no predictions in 
Zone D and E.
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layer, and (2) it imposes a much lower overhead on participants compared to invasive fingerstick tests while also 
eliminating input errors by directly exporting the glucose data. Although measuring glucose in the interstitial 
fluid instead of blood can introduce an approximately 10% error in estimating blood glucose levels 50, fingerstick 
tests can have inaccuracies ranging from 5.6% to 20.8% depending on the brand and model51. Therefore, CGMs 
offer an acceptable level of accuracy comparing to fingerstick tests.

The CEG is a widely used metric in diabetes research where the predicted glucose values obtained from our 
sensing system are plotted against the reference glucose values retrieved from the CGM. It is divided into five 
zones: A-E. Zone A indicates clinically accurate predictions, with no effect on clinical action. Zone B corresponds 
to altered clinical action in which the errors in the predicted glucose value affect the treatment decision. Zone 
C represents predictions of higher or lower glucose values, leading to overcorrection. In Zone D, actual glucose 
values are either too high or too low, while predicted glucose values fall within the healthy range. This fails to 
detect abnormal blood glucose level, which poses risks to the user. Finally, Zone E indicates incorrect decisions 
due to reporting opposite events, leading to anti-correction. Additionally, we analyze the results by calculating 
the Pearson/Spearman correlation coefficients and the mean absolute relative difference (MARD)22 between the 
predicted blood glucose level and the reference level. MARD is calculated as follows:

	
MARD = 1

n

n∑ |Predicted Value − Reference Value|
Reference Value

,

which explains the mean percentage difference between predicted and reference glucose level.

Overall performance
We present the performance of our system using different models and feature processing procedures; see Table 1. 
We use leave-one-out cross-validation to maximize the use of available training samples while ensuring temporal 
independence, as the data points from each user are spaced apart by an average of 1.98 hours throughout the day. 
Overall, we observe that simple Bayesian ridge regression with improper use detection, image features, feature 
selection, and stratified training achieves the best performance. In particular, this model outperforms other 
machine learning models such as Gaussian process regression, XGBoost, and Neural Network. Ridge regression 
performs better than other methods due to the multicollinearity nature of the data, making the model less prone 
to overfitting. This is because the raw sensor readings consist of data collected from three laser diodes, two liquid 
crystal states, and 100 power intensities, resulting in a dimension of 600 that are highly correlated with each 
other. Despite using PCA to reduce the dimensionality, the remaining features are still correlated to each other, 
making ridge regression ideal for our scenario. On the other hand, Bayesian linear models excel in situations 
with high uncertainty. Specifically, the use of the sensing boxes varies among individuals despite prior training. 
This results in a better performance compared to other models. Regarding neural-network-based methods, the 
lower performance may be attributed to the high dimensionality of the data and the relatively small dataset, 
leading to overfitting.

Moreover, we plot the prediction results onto the CEG using three of the random seeds (Fig.  3). These 
random seeds affect the initialization weights and the optimization trajectory and therefore come to different 
results. Among the three CEG plots, 95.29%, 95.14%, and 95.29% of predictions lie within Zone A or B, which 
are clinically accurate and clinically acceptable. Only 4.71%, 4.86%, and 4.71% of predictions are in Zone C. No 
predictions are in Zone D and E. These results indicate that, our system can consistently get promising results 
and is robust to random seeds.

Ablation study
In this section, we remove each individual component to understand its effect on the system’s overall performance.

Improper use detection  Identifying and filtering out improper use cases greatly improves the performance of 
the system, reducing MARD from 0.27 to 0.24 and increasing Pearson correlation from 0.59 to 0.67. This im-
provement stems from the fact that improperly collected data points reside in a distinct feature space compared 
to the properly collected ones. Due to the dataset’s limited size, there is insufficient data to capture the improper 
data feature space, resulting in high prediction error for these data points.

Method MARD Pearson Spearman

Bayesian ridge regression 0.24 0.67 0.63

w/o Improper use detection 0.27 0.59 0.54

w/o Image features 0.25 0.66 0.63

w/o Feature selection 0.26 0.62 0.57

w/o Stratified training 0.32 0.47 0.43

Gaussian process regression 0.28 0.58 0.54

XGBoost 0.28 0.56 0.53

Neural network 0.29 0.51 0.48

Table 1.  System’s performance with different models and features processing procedures. Significant values are 
in bold. The values are obtained by averaging the result from three trajectories.
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Image features  Incorporating features derived from the palm image marginally enhances the system’s perfor-
mance. These features, obtained from various color and texture spaces, describe the participant’s skin tone and 
texture in a continuous manner. However, demographic features, especially age and race, may also correlate with 
these image features. For example, aging can lead to changes such as thinner skin, uneven pigmentation, and 
decreased water content52, while race influences skin tone. Thus, having both palm image features and demo-
graphic features only provides a minor improvement to the model performance.

Feature selection  The feature selection procedure improves the performance of the system, reducing the 
MARD from 0.26 to 0.24 and increasing the Pearson correlation from 0.62 to 0.67. This indicates that using too 
many features with an insufficient amount of training data could easily lead to overfitting. PCA is employed to 
reduce dimensionality, which can mitigate multicollinearity by creating orthogonal variables to capture most of 
the data variance. Additionally, features are further filtered by selecting only those with the highest importance 
weights using XGBoost, effectively enhancing system’s performance.

Stratified training  Training a separate model for each group of sensing boxes significantly impacts the overall 
performance. If a joint model is trained for all sensing boxes instead, the MARD increases from 0.24 to 0.32 
while the Pearson correlation and Spearman correlation drop from 0.67 to 0.47 and 0.63 to 0.43, respectively. 
One potential reason for this is that the features of various sensing boxes occupy different subspaces in the fea-
ture space. Due to the small amount of training data, the machine learning model cannot learn these complex 
patterns by itself. Hence, manually separating the data produces better results.

Sensitivity analysis
We conduct a sensitive study to assess how different sensing boxes, users and races affect the performance of 
the system. The MARD, the Pearson correlation, and the Spearman correlation concerning each variable are 
tabulated in Table 2.

Sensing box  Figure 5a demonstrates the MARD scores for different sensing boxes, ranging from 0.234 to 0.260. 
While sensing box 2 yields the best results, all the other three sensing boxes perform similarly. The standard 
deviation (s.t.d.) of these four sensing boxes is 0.009, indicating that our system does not exhibit strong bias 
regarding sensing boxes.

User  In Fig. 4, results for different users are visualized. Users are sorted by their MARD performance, which 
ranges from 0.148 to 0.365. The overall s.t.d. is 0.05, suggesting that our machine learning model does exhibit 
strong bias. Possible reasons for the performance gap include data noise and the lack of data collected from di-
verse demographics. A CEG plot for each user is also available in Figure S1 at the Supplementary Information 1.

Demographics  Performance for different genders and races is examined in Table 2 and Fig. 5b and c. MARD 
for male and female participants is 0.269 and 0.237, respectively, while MARD for Asian, Black or African Amer-
ican, Hispanic or Latino, and White are 0.201, 0.228, 0.252, 0.247 respectively. The s.t.d. for gender is around 

Fig. 4.  The performance of each participant. Each bar corresponds to the averaged MARD from the 
trajectories for a single participant. The performances are sorted in an ascending order.

 

Sensing Box Gender Race

1 2 3 4 M F A B/AA H/L W

MARD 0.234 0.260 0.243 0.243 0.269 0.237 0.201 0.228 0.252 0.247

Pearson 0.708 0.679 0.649 0.613 0.665 0.672 0.339 0.683 0.698 0.571

Spearman 0.611 0.647 0.676 0.521 0.653 0.619 0.302 0.664 0.703 0.535

Table 2.  The performance of the system with respect to each sensing box, gender, and race. The MARD, 
Pearson correlation, and Spearman correlation are listed. The genders include Male (M) and Female (F), and 
the races listed are Asian (A), Black or African American (B/AA), Hispanic or Latino (H/L), and White (W).
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0.016 and for race 0.02, indicating that our system does not exhibit strong bias towards a particular demograph-
ics category.

Although male participants have a higher MARD compared to female participants, the correlations are 
similar, suggesting that the poorer performance may be due to the imbalance of our dataset. There are 16 female 
participants but only 6 male participants. Regarding the performance between races, it is noteworthy that Asians 
have the lowest MARD, but also a lower correlation coefficient. This is likely due to having only a single Asian 
participant, and upon closer inspection, we found a narrow range in the reference glucose values. As noise in 
collected data introduces random fluctuations, it leads to a lower correlation coefficient. Overall, our model 
demonstrates robustness across different demographic groups.

Comparison to a prior work  We develop a non-invasive glucose sensing system that is portable and convenient 
to use, which is inspired by a prior work13 . In particular, we realize a much smaller form factor by utilizing a light 
trap mechanism to capture the unwanted specular reflection light and enable a better representation of skin tone 
and condition using features extracted from palm image. Furthermore, our clinical study allows the patients to 
bring the sensing prototype back home and use the system in an unsupervised manner. This is closer to a real 
use case scenario and more convenient for the participants to collect more data points. While most participants 
have been properly placing their palms for data collection, we observed a noticeable fraction of the collected 
data to be noisy and captured improperly. The resulting degradation of data quality subsequently affects the 
system’s performance. In contrast, the data collection process in the previous study is conducted in a controlled 
lab setting, where each patient used our sensing prototype under our supervision during their doctor office visit 
to ensure proper and correct prototype usage. Additionally, our sensing box is significantly smaller than the 
prior work (8cm × 7.5cm × 3.5cm vs 17cm × 10cm × 5cm). Despite the use of the light trap mechanism, 
the small form factor still introduces additional specular reflection to the sensor which increases the amount of 
noise captured by the sensor. Therefore, the combined effects resulted in a lower performance.

Discussion
We study the efficacy of the polarization-based technique for glucose level inference by proposing a portable 
sensing system with a dedicated machine learning model to handle improper use cases and evaluating it with 
a clinical study. The multi-session clinical evaluation of 22 people with Type 1 Diabetes results in over 95% 
of predictions in Zone A and B, and a 0.24 MARD. The improper usage of the sensing prototype in a home 
monitoring setting has introduced significant noise affecting sensing accuracy. Overall we observe that use of 
light polarization properties for sensing glucose level holds promises. Next we discuss future research directions 
to improve sensing performance.

First, future studies can further improve the dataset scale, participant diversity, and the quality of ground-
truth data to enhance the sensing performance. Our current dataset has limited data on 22 user population. 
The dataset size leads to more features extracted from the sensor data than the number of data points. As such, 
complex models such as neural networks tend to overfit quickly and we can only resolve to simpler machine 
learning models such as regression which are less effective against noise. Moreover, each participant collected 
on average 40 data points only, which is insufficient for training a personalized model given the high level of 
noise. We currently use a leave-one-out cross-validation strategy to train the model due to the limited dataset. 
This is a valid approach as the data points are spaced several hours apart, indicating that a similar number of 
calibrations may be needed to achieve the same performance for new users. With a larger dataset, we could 
explore alternative split strategies, such as leaving out an entire day or an entire participant to better assess the 
model’s generalizability. As for the reference glucose data, although CGMs report interstitial fluid glucose levels 
that are highly correlated to fingerstick tests53, it still inherently contains a delay in glucose level responses. For 
future studies, we can include fingerstick tests as our ground truth for training the model. Additionally, we 
conduct a separate study involving a participant without diabetes using fingerstick tests. We collect 40 pairs of 
data points using our prototype and the Contour Next One glucometer. Our results shows a MARD of 0.182 with 
all predictions falling within Zone A and Zone B of the CEG (Refer to Fig. S2 in Supplementary Information 

Fig. 5.  The performances of the system regarding different (a) sensing boxes, (b) genders, and (c) races. Each 
bar corresponds to a trajectory, and they are grouped by (a) sensing box ID, (b) genders, and (c) races.
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2 for more details). These findings are comparable to ours and other prior studies that sense the glucose in the 
interstitial fluid layer in real-world conditions11,26.

Second, the techniques of palm feature extraction can be optimized with a larger dataset. In the current study, 
we extract the features from the palm by converting the whole image into various color and texture spaces. These 
features are useful to describe the skin tone and the texture of the palm. However, since the images are taken 
manually, they are captured under different lighting conditions. The features are extracted from the whole image, 
but only a portion of the image is the palm. Finally, spatial features such as pigmentation and damaged skin are 
not captured due to the dataset size that prevents us from building an end-to-end neural network to extract palm 
features efficiently. With a larger dataset, we can explore more on the palm feature extraction, and hopefully 
further improve the performance of the system. In particular, we can take a high resolution image of the palm 
and employ a more sophisticated neural network to perform segmentation. This allows us to extract useful 
information such as the skin surface and the sweat glands as the uneven nature of the skin and the secretions of 
sweat could affect how light is reflected from the skin54. To achieve better self-supervised inference for low-level 
vision features, e.g., brightness, lightness, recently-developed large-scale vision foundation models55 may be an 
alternative choice and candidate for feature extraction.

Third, the system can be further optimized to support continuous monitoring and reduce the likelihood 
of improper usage. Specifically, to further reduce the prototype size and make it wearable, we can consider a 
skin-attachable sensor form factor56. The idea is to place the light source and sensor directly in contact with 
the skin so that all the light that reaches to the sensor must come from the skin. This allows us to remove the 
45◦ incident light source design and the light trap which is one of the biggest components inside the sensing 
box, significantly reducing the sensing box into a much smaller form factor. The small form factor makes it 
more convenient for the user to have the sensor placed on the skin 24/7, realizing the continuous monitoring 
feature. It can also reduce the chance of improper usage, as the optical components are directly touching the skin, 
where the propagation of light rays will be relatively constant throughout the sensing session. On the software 
side, currently the smartphone application is only used to collect and upload the sensing box measurements 
to a server for offline analysis. For a real-time glucose sensing system, a web service API can be implemented 
to receive the sensing box readings and perform glucose estimation. The simple machine learning model only 
requires 0.01 seconds on a computer to perform inference, enabling a continuous monitoring application. 
Finally, the user experience of various form factors should be explored to maximize the system’s usability. This 
allows us to better understand the user’s preferences such as the shape, size, and location of the sensors, resulting 
in a more comfortable and convenient system.

Finally, future research can dive deeper into the impact of confounding factors. For example, other substances 
in the interstitial fluid such as collagen and albumin are also optically active 57. While the concentration of these 
substances could be relatively constant for a person, they may be quite different compared to other people. These 
individual differences will introduce errors to our prediction model. Moreover, the visible light can be absorbed 
by the haemoglobin and melanin inside the skin58, which adds another layer of noise to the signal. This is a 
challenging problem that have been affecting all optical techniques. One potential solution is to probe the skin 
with more wavelengths and intensity levels as each substance can have a unique optical rotation profile. Another 
direction is to combine with other techniques to better separate confounding factors from glucose molecules. 
For example, infrared spectroscopy can be utilized as each substance has a unique absorption spectrum which 
differs with the specific rotation. Environmental factors, such as temperature and humidity, can influence 
skin condition. Although the polarimetry-based technique has demonstrated robustness against temperature 
changes and pressure variations in controlled lab settings 13, the higher variability of these factors in real-world 
environments could impact the system’s accuracy. In particular, the clinical study spans an entire year, capturing 
data across different seasons and weather conditions. To mitigate this, one solution is to incorporate additional 
temperature and humidity sensors to monitor and account for these environmental changes. Furthermore, the 
skin-attachable sensor form factor mentioned earlier could help shield the skin from external environmental 
influences, providing more consistent measurement conditions. Research efforts can focus on efficient hardware 
design and algorithmic solutions to fuse various techniques for more reliable noninvasive glucose sensing.

Methods
Clinical study protocol
We initially recruited 30 participants for the study, but three dropped out after the start of the study. Subsequently, 
we excluded data from five participants due to a majority of their collected data exhibiting signs of improper 
usage. Consequently, our dataset contains 962 data points from 22 participants. The demographics of these 
participants are outlined in Table 3. Participants were familiarized with the data collection procedure and given 
the opportunity to practice scanning their palms on the first day, where then they take the device with them and 
perform the remaining scans at home. Each participant was instructed to take measurements approximately 
eight times daily over a 5-day period, including measurements taken upon waking up, before and after meals, 
and before bedtime. The participants also used their CGM to collect the glucose level data, which was manually 
entered into the system as reference glucose values. Additionally, participants’ CGM data was retrieved from 
Clarity or Libreview CSV files. As a token of appreciation, each participant received a $75 Amazon Gift Card 
upon completion of the study. This study was approved by the Institutional Review Board of Barbara Davis 
Center for Diabetes at University of Colorado Anschutz Medical Campus and was conducted in compliance with 
applicable guidelines and regulations. Informed consent were obtained from all participants.

Features extraction
We explore the features extracted from the sensor readings and the palm images that are utilized for glucose 
level prediction.
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Polarization-based optical features
As glucose is optically active, the plane of polarization will be rotated when linearly polarized light passes through 
them. For example, it rotates a light beam of 589 nm clockwise by 52.7circ dm−1(g/mL)−1 at 20circC43. This 
rotation α is linearly proportional to the glucose concentration C which can be explained by the following 
equation.

	 α = R(λ, T ) · C · L,� (1)

where R(λ, T ) is the rotary power of glucose with respect to the wavelength λ and temperature T, and L is the 
optical path length60. In our setup, we utilize light of two polarization states. The sensor readings are denoted as 
Ion and Ioff when the liquid crystal is on and off respectively. We can calculate a feature F such that

	
F = Ion − Ioff

Ion + Ioff
= Ip(− cos 2α) − Is

Ir
= Ip

Ir
(− cos 2α) − Is

Ir
.

Approximating the cosine function with Taylor series,

	
F ≈ Ip

Ir
(α2

2 − 1) − Is

Ir
,

where IpIr
 and IsIr

 correspond to the ratio of polarized light and specular light to the total reflected light respectively. 
These two terms are related to the design of the system such as the placement of the optical components and, 
therefore, are constant. Then, the feature value F that we calculated has an interesting physical property as it has 
a direct correlation with the square of the rotation angle α. A full derivation can be found at Supplementary 
Information 3.

Palm image features
The features from the collected palm images of the participants are extracted. These features aim to provide 
a comprehensive representation of the palm, capturing both color and texture information. First, in the HSV 
color space, we generate the features: mean hue (H), saturation (S), and value (V), which describe the dominant 
color, vibrancy, and overall brightness, respectively. Second, we convert the images to the LAB color space which 
consists of the mean lightness (L) and the mean values of the green-red (A) and blue-yellow (B) components, 
offering a color representation aligned with human perception. Third, Local Binary Pattern (LBP) features 
capture texture information by encoding local pixel variations into a histogram, reflecting the frequency of 
specific texture patterns. By combining these features, it generates a rich, multidimensional image descriptor 
of the palm, effectively capturing the skin tones and textures and enhancing the overall accuracy of the system.

System design
We fabricate four sensing boxes that are wireless and portable using off-the-shelf components. Figure 1 shows 
the overview of our noninvasive glucose sensing system. Figure 1b–e illustrate our system, which contains three 
components: a sensing box, a smartphone application, and our glucose estimation pipeline. The usage of the 
sensing box is shown on Fig. 1a.

Sensing box
The sensing box, contained within a 3D-printed enclosure measuring at 8cm × 7.5cm × 3.5cm, integrates 
electronic components and a rechargeable battery. At its core lies the optical unit, capable of emitting laser light 
at three wavelengths (658 nm, 520 nm, 450 nm) and two polarization states (0◦, 90◦) using three laser diodes 
and a liquid crystal. The laser light intensity is modulated by the control unit using a switch and a potentiometer 
whereas the liquid crystal is driven by an integrated chip. On the other hand, the reflected light is detected via 
an optical sensor and amplifiers. Both the optical and the sensing components are managed by a microcontroller 
powered by a 3.7V lithium polymer. The total cost of the sensing box is around $210 with the majority goes to 
the laser diodes ($130) and the microcontroller ($30). This can be further reduced through mass production.

Due to its small profile, the light source, the optical sensor, and the skin are brought very close together. This 
results in the optical sensor capturing a lot of light that is readily reflected off the surface of both the palm and the 
sensing box. This reflected light has not interacted with the glucose inside the skin and significantly increases the 

Demographics

Age Gender Race group Skin tone CGM

Median IQR Male Female A B/AA H/L W Mean SD FL1 FL2 DG6

No. of Users 28.5 12.5 6 16 1 4 3 15 1.13 0.34 1 1 19

Table 3.  Demographics of the participants recruited for the clinical study. The race groups are Asian (A), 
Black or African American (B/AA), Hispanic or Latino (H/L), and White (W). The CGMs are Freestyle Libre 
1 (FL1), Freestyle Libre 2 (FL2), and Dexcom G6 (DG6). The skin tone is represented by the Fitzpatrick Scale, 
where 1 is the lightest and 6 is the darkest. They are obtained by extracting the palm region and analyzing the 
image in the LAB color space. Note that the palm is generally lighter compared to other part of the skin due to 
a different melanosome distribution59, resulting in a generally lower Fitzpatrick Scale value.
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portion of noise to the sensor reading. We employ a structural design that implements a light trap mechanism 
to guide the specular light away from the sensor. Figure 1d shows the cross-section view of the sensing box. The 
light trap is positioned such that the specular light will enter the light trap and then bounce around the trap 
multiple times. Additionally, the light trap is coated with light-absorbing material to maximize light absorption, 
effectively minimizing the leakage from the light trap back to the sensing element. The implementation and the 
hardware details are described in the Supplementary Information 4.

Smartphone application
Our dedicated Android smartphone application, developed in Java, facilitates seamless communication with the 
sensing box via Bluetooth using the UART protocol. It sends commands to the sensing box to initiate the sensing 
procedure which controls the liquid crystal and laser diodes, and retrieve the readings back from the sensing 
box. The application also provides a user-friendly interface for capturing palm images and collecting the user’s 
demographics, including age, gender, race, ethnicity, and the type of diabetes (Figure 1(b)). When the application 
receives all the required data, it uploads them to a secure database for future analysis. Additionally, the Internet 
connection status, the Bluetooth connection status, and the sensing box battery percentage are displayed to the 
user. This ensures that users are aware of the system’s status, ensuring the sensing box has sufficient power and 
connectivity for proper functionality, and enabling successful upload of data to the database.

Glucose estimation pipeline
The glucose level estimation pipeline depicted in Fig. 1e comprises three key stages. Initially, improper use 
cases are identified through a combination of statistical analysis and machine learning techniques to filter 
out unreliable data points. Following this, the optimal set of features are selected using PCA and XGBoost 
Importance Selection. Finally, the model is trained and evaluated using leave-one-out cross-validation. This 
approach is particularly well-suited for the small dataset, as it maximizes the use of available training samples, 
thereby improving the reliability of the model’s performance evaluation. Furthermore, it is valid in this context 
because the data points collected by each user are spaced several hours apart. This temporal separation ensures 
independence between training and testing samples, effectively eliminating the risk of data leakage. The entire 
pipeline is highly efficient, taking approximately 0.01 seconds to complete a single glucose estimation.

Improper usage detection
Improper usage detection involves identifying instances where users fail to adhere to the sensing procedure. 
Our sensing box requires a user to fully cover the sensing area with their palm while remaining fully flat and 
stationary for around 1 minute. While ensuring adherence to the correct procedure is feasible under supervision, 
it becomes challenging in unsupervised home monitoring scenarios. Despite the convenience and flexibility of 
allowing users to perform sensing at their discretion which allows more data points to be collected, the quality of 
the data, however, may suffer when the users do not strictly adhere to the protocol. Here, we identify four types 
of improper usage scenarios and address them with various techniques:

•	 Curved hand Users often relax their hand instead of keeping it flat, creating an air pocket between the palm 
and the glass. This alters the geometry of the light’s path, resulting in readings that diverge into a different 
feature space. To tackle this issue, we collect a separate dataset with users intentionally relaxing their hands 
on the sensing box and train a classifier to detect those scenarios. Combining this improper use-case dataset 
with the clinical study dataset, we employ PCA to visualize the data into a 2D feature space (Fig. 6). Notably, 
the light blue points representing the improper use cases are separable from the rest. We filter out all the data 
points that are classified as improper use data (red points) with a confidence score greater than 0.705 using a 
binary support vector classifier.

•	 Hand moved during sensing During a standard sensing procedure, the user’s hand remains stationary while 
the power of the laser diodes gradually increases. This results in a relatively smooth increase in reflected light 
intensity over time. However, if the user’s hand moves during the procedure, it causes a sudden spike in the 
sensor reading as ambient light is leaked into the sensing box. We detect these spikes by calculating changes 
in reflected light intensity and comparing them to a predefined threshold.

•	 Sensing area not fully covered When the user’s hand does not cover the sensing box entirely, some ambient 
light enters the sensing box and fully saturates the optical sensor. We can simply remove these data points as 
the sensing box could not capture anything useful under such conditions.

•	 Incorrect input of CGM data The ground truth is entered by the user after performing a sensing procedure. 
However, errors may occur due to human error. To rectify this, we extract corresponding CGM values from 
Clarity or Libreview CSV files. If there are two readings within 5 minutes before and after the sensing pro-
cedure, we linearly interpolate these two values to obtain the corrected ground truth. Otherwise, we use the 
user-entered value as the ground truth.

Our original dataset contains 1147 data points from 27 users, where 89 improper use cases are detected by the 
algorithm above. Upon analyzing the improper data, we notice 5 users who have more than 10 improper use 
cases, and subsequently removed from the dataset, resulting in a total of 962 data points in the dataset.

Feature selection  After the improper data is removed, we perform feature selection to identify an optimized 
set of features for maximum performance. Three types of data are used: the user’s demographics, palm image 
features, and sensor values features. The user demographics consist of 14 features, including age, gender, and 
races, which are collected through the smartphone application interface as previously described. The palm image 
is also obtained through the smartphone application, where 1,034 features are extracted using various color and 
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texture spaces. The sensor values are obtained by emitting light from three individual laser diodes using 100 
intensity configurations and two polarization states, resulting in a total of 600 raw values. Additionally, nine 
features are calculated from the raw sensor readings. Combining these three types of data results in a total of 
1,657 features.

Given the relatively large feature dimension compared to the dataset size, we employ unsupervised feature 
selection using PCA for continuous features, effectively reducing dimensionality from 1,657 to 300 dimensions. 
To further refine feature selection, we select the most important features by filtering out those with the importance 
score lower than 0.01 using XGBoost.

Machine learning model  Four sensing boxes are manually produced for the clinical study, but the slight differ-
ences in the sensing boxes have caused the collected data points to reside in distinct feature spaces. Observing 
varying degrees of similarity among different sensing boxes, we perform stratified training by grouping data 
points from sensing box 1 and 2 into one group, and sensing box 3 and 4 into another group. During training, 
we separately train a model for each group and select the appropriate model during inference.

We explore the performance of a diverse range of models, spanning from simple ridge regressors to 
sophisticated neural networks. Ultimately, we employ the Bayesian Rigid Regression model with hyper-
parameters α1 = 2.5 × 10−6, α2 = 2.5 × 10−6, λ1 = 5 × 10−7, λ = 5 × 10−7, which controls the shape 
for the prior Gamma distribution. For the data selection model, we utilize a gradient boosting tree regressor 
with 0.1 learning rate, 80 estimators, and the MSE (mean squared errors) loss. Features are whitened for all 
non-categorical features, while categorical features are transformed into binary discrete values. This strategic 
approach contributes to the robustness and effectiveness of our system, particularly in the face of data limitations.

User experience study  After the clinical study, we asked the participants if they have any comments and sug-
gestions for improving the system. In general, the participants think it was easy and comfortable to use. It be-
comes straightforward once the scanning procedure is explained and demonstrated clearly at the beginning. 
A minor inconvenience of the system is the occasional disconnection of the sensing box with the smartphone, 
which requires the users to turning both devices off and on. The participants like the portability of the device, 
which can be carried around. The proposed system is preferred over the finger prick tests because of its noninva-
sive nature, but the current form factor is still larger than the CGMs, which the participants favor more. Overall, 
the participants think the device would be useful for glucose management, and they look forward to the future 
version with a wearable form factor.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Zenodo repository: 
https://zenodo.org/doi/10.5281/zenodo.13138650.

Received: 31 July 2024; Accepted: 28 February 2025

References
	 1.	 Centers for Disease Control and Prevention. National Diabetes Statistics Report. ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​d​​c​.​g​​o​v​/​d​i​​a​b​e​t​​e​​s​/​​p​h​p​/​​d​​a​t​a​-​​r​e​s​e​​a​​r​c​h​/​

i​​n​d​e​x​.​h​t​m​l (2021). Accessed 30 July 2024.
	 2.	 ElSayed, N. A. et al. 10. cardiovascular disease and risk management: Standards of care in diabetes-2023. Diabetes Care 46, S158–

S190 (2023).

Fig. 6.  The improper use dataset and the main dataset are plotted after applying PCA in a 2D feature space. 
The points in light blue are the noisy data that we collected in the improper use dataset and the red points are 
filtered out, leaving the dark blue data points in the main dataset. PC1 and PC2 denote the top-2 principal 
components.

 

Scientific Reports |         (2025) 15:8877 11| https://doi.org/10.1038/s41598-025-92515-6

www.nature.com/scientificreports/

https://zenodo.org/doi/10.5281/zenodo.13138650
https://www.cdc.gov/diabetes/php/data-research/index.html
https://www.cdc.gov/diabetes/php/data-research/index.html
http://www.nature.com/scientificreports


	 3.	 Group D. R. The diabetes control and complications trial (dcct): Design and methodologic considerations for the feasibility phase. 
Diabetes 35, 530–545 (1986).

	 4.	 ElSayed, N. A. et al. Facilitating positive health behaviors and well-being to improve health outcomes: Standards of care in 
diabetes-2023. Diabetes Care 46, S68–S96 (2023).

	 5.	 Forlenza, G. P., Kushner, T., Messer, L. H., Wadwa, R. P. & Sankaranarayanan, S. Factory-calibrated continuous glucose monitoring: 
How and why it works, and the dangers of reuse beyond approved duration of wear. Diabetes Technol. Ther. 21, 222–229 (2019).

	 6.	 Kim, J., Campbell, A. S. & Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 177, 163–170 (2018).
	 7.	 Waghule, T. et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharm. 

109, 1249–1258 (2019).
	 8.	 Christiansen, M. et al. A new-generation continuous glucose monitoring system: Improved accuracy and reliability compared with 

a previous-generation system. Diabetes Technol. Ther. 15, 881–888 (2013).
	 9.	 Han, G. et al. Noninvasive blood glucose sensing by near-infrared spectroscopy based on plsr combines sae deep neural network 

approach. Infrared Phys. Technol. 113, 103620 (2021).
	10.	 Srichan, C. et al. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring 

and medical features. Sci. Rep. 12, 1769 (2022).
	11.	 Pleus, S. et al. Proof of concept for a new raman-based prototype for noninvasive glucose monitoring. J. Diabetes Sci. Technol. 15, 

11–18 (2021).
	12.	 Pai, P. P. et al. Cloud computing-based non-invasive glucose monitoring for diabetic care. IEEE Trans. Circuits Syst. I Regul. Pap. 

65, 663–676 (2017).
	13.	 Li, T. et al. Noninvasive glucose monitoring using polarized light. In Proceedings of the 18th Conference on Embedded Networked 

Sensor Systems, 544–557 (2020).
	14.	 Lin, P.-H., Sheu, S.-C., Chen, C.-W., Huang, S.-C. & Li, B.-R. Wearable hydrogel patch with noninvasive, electrochemical glucose 

sensor for natural sweat detection. Talanta 241, 123187 (2022).
	15.	 Li, Q.-F., Chen, X., Wang, H., Liu, M. & Peng, H.-L. Pt/mxene-based flexible wearable non-enzymatic electrochemical sensor for 

continuous glucose detection in sweat. ACS Appl. Mater. Interfaces 15, 13290–13298 (2023).
	16.	 Asaduzzaman, M. et al. A hybridized nano-porous carbon reinforced 3d graphene-based epidermal patch for precise sweat glucose 

and lactate analysis. Biosens. Bioelectron. 219, 114846 (2023).
	17.	 Elsherif, M., Hassan, M. U., Yetisen, A. K. & Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using 

smartphones. ACS Nano 12, 5452–5462 (2018).
	18.	 Kim, S., Jeon, H.-J., Park, S., Lee, D. Y. & Chung, E. Tear glucose measurement by reflectance spectrum of a nanoparticle embedded 

contact lens. Sci. Rep. 10, 8254 (2020).
	19.	 Zhou, F. et al. Flexible electrochemical sensor with fe/co bimetallic oxides for sensitive analysis of glucose in human tears. Anal. 

Chim. Acta 1243, 340781 (2023).
	20.	 Diouf, A., Bouchikhi, B. & El Bari, N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer 

and its application in measuring saliva glucose. Mater. Sci. Eng. C 98, 1196–1209 (2019).
	21.	 Hu, S. et al. Enzyme-free tandem reaction strategy for surface-enhanced raman scattering detection of glucose by using the 

composite of au nanoparticles and porphyrin-based metal-organic framework. ACS Appl. Mater. Interfaces 12, 55324–55330 
(2020).

	22.	 Leung, H. M. C., Forlenza, G. P., Prioleau, T. O. & Zhou, X. Noninvasive glucose sensing in vivo. Sensors 23, 7057 (2023).
	23.	 Li, N. et al. A noninvasive accurate measurement of blood glucose levels with raman spectroscopy of blood in microvessels. 

Molecules 24, 1500 (2019).
	24.	 Aloraynan, A., Rassel, S., Kaysir, M. R. & Ban, D. Dual quantum cascade lasers for noninvasive glucose detection using 

photoacoustic spectroscopy. Sci. Rep. 13, 7927 (2023).
	25.	 Park, E.-Y., Baik, J., Kim, H., Park, S.-M. & Kim, C. Ultrasound-modulated optical glucose sensing using a 1645 nm laser. Sci. Rep. 

10, 13361 (2020).
	26.	 Pors, A. et al. Accurate post-calibration predictions for noninvasive glucose measurements in people using confocal raman 

spectroscopy. ACS Sens. 8, 1272–1279 (2023).
	27.	 Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 87, 394–398 (2015).
	28.	 De la Paz, E. et al. Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch. Anal. 

Chem. 93, 12767–12775 (2021).
	29.	 Hakala, T. A. et al. Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring. Sci. Rep. 11, 

7609 (2021).
	30.	 Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using 

computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).
	31.	 Chen, J., Arnold, M. A. & Small, G. W. Comparison of combination and first overtone spectral regions for near-infrared calibration 

models for glucose and other biomolecules in aqueous solutions. Anal. Chem. 76, 5405–5413 (2004).
	32.	 Hina, A. & Saadeh, W. A noninvasive glucose monitoring soc based on single wavelength photoplethysmography. IEEE Trans. 

Biomed. Circuits Syst. 14, 504–515 (2020).
	33.	 Gupta, S. S., Kwon, T.-H., Hossain, S. & Kim, K.-D. Towards non-invasive blood glucose measurement using machine learning: An 

all-purpose ppg system design. Biomed. Signal Process. Control 68, 102706 (2021).
	34.	 Lee, P.-L., Wang, K.-W., Hsiao, C.-Y. A non-invasive blood glucose estimation system using dual-channel ppgs and pulse-arrival 

velocity. IEEE Sens. J. (2023).
	35.	 Hammour, G. & Mandic, D. P. An in-ear ppg-based blood glucose monitor: A proof-of-concept study. Sensors 23, 3319 (2023).
	36.	 Nader, E. et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. 

Physiol. 10, 1329 (2019).
	37.	 Li, J. et al. An approach for noninvasive blood glucose monitoring based on bioimpedance difference considering blood volume 

pulsation. IEEE Access 6, 51119–51129 (2018).
	38.	 Pedro, B. G., Marcôndes, D. W. C. & Bertemes-Filho, P. Analytical model for blood glucose detection using electrical impedance 

spectroscopy. Sensors 20, 6928 (2020).
	39.	 Obaid, S. M., Elwi, T. & Ilyas, M. Fractal minkowski-shaped resonator for noninvasive biomedical measurements: Blood glucose 

test. PIER (2021)
	40.	 Hanna, J. et al. Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring. Sci. 

Rep. 12, 14885 (2022).
	41.	 Zhang, M. et al. Microfluidic microwave biosensor based on biomimetic materials for the quantitative detection of glucose. Sci. 

Rep. 12, 15961 (2022).
	42.	 Deurenberg, P., Weststrate, J., Paymans, I. & Van der Kooy, K. Factors affecting bioelectrical impedance measurements in humans. 

Eur. J. Clin. Nutr. 42, 1017–1022 (1988).
	43.	 Windholz, M. The merck index an encyclopedia of chemical and drugs. In The Merck Index an Encyclopedia of Chemical and Drugs, 

15–1313 (publisherMerck & Co., Inc., 1976).
	44.	 Cameron, B.D., Gorde, H., Cote, G.L. Development of an optical polarimeter for in-vivo glucose monitoring. In Optical Diagnostics 

of Biological Fluids IV, vol. 3599, 43–49 (SPIE, 1999).

Scientific Reports |         (2025) 15:8877 12| https://doi.org/10.1038/s41598-025-92515-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	45.	 Malik, B.H., Coté, G.L. Real-time dual wavelength polarimetry for glucose sensing. In Optical Diagnostics and Sensing IX, vol. 
7186, 7–11 (SPIE, 2009).

	46.	 Jacques, S. L., Lee, K. & Ramella-Roman, J. C. Scattering of polarized light by biological tissues. In Saratov Fall Meeting’99: Optical 
Technologies in Biophysics and Medicine, vol. 4001, 14–28 (SPIE, 2000).

	47.	 Pearson, K. Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 
(1901).

	48.	 Chen, T., Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference 
on Knowledge Discovery and Data Mining, 785–794 (2016).

	49.	 Parkes, J. L., Slatin, S. L., Pardo, S. & Ginsberg, B. H. A new consensus error grid to evaluate the clinical significance of inaccuracies 
in the measurement of blood glucose. Diabetes Care 23, 1143–1148 (2000).

	50.	 Kovatchev, B. P., Patek, S. D., Ortiz, E. A. & Breton, M. D. Assessing sensor accuracy for non-adjunct use of continuous glucose 
monitoring. Diabetes Technol. Ther. 17, 177–186 (2015).

	51.	 Ekhlaspour, L. et al. Comparative accuracy of 17 point-of-care glucose meters. J. Diabetes Sci. Technol. 11, 558–566 (2017).
	52.	 Farage, M. A., Miller, K. W., Elsner, P. & Maibach, H. I. Structural characteristics of the aging skin: a review. Cutan. Ocul. Toxicol. 

26, 343–357 (2007).
	53.	 Matabuena, M. et al. Reproducibility of continuous glucose monitoring results under real-life conditions in an adult population: a 

functional data analysis. Sci. Rep. 13, 13987 (2023).
	54.	 Sim, J. Y., Ahn, C.-G., Jeong, E.-J. & Kim, B. K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring 

invulnerable to skin secretion products. Sci. Rep. 8, 1059 (2018).
	55.	 Kirillov, A. et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4015–4026 

(2023).
	56.	 Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, 

and prosthetics. Adv. Mater. 31, 1904765 (2019).
	57.	 Yasui, T., Tohno, Y. & Araki, T. Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-

generation polarimetry. J. Biomed. Opt. 9, 259–264 (2004).
	58.	 Anderson, R., Parrish, J. Optical properties of human skin. The Science of Photomedicine, 147–194 (1982).
	59.	 Milburn, P. B., Sian, C. S. & Silvers, D. N. The color of the skin of the palms and soles as a possible clue to the pathogenesis of acral-

lentiginous melanoma. Am. J. Dermatopathol. 4, 429–434 (1982).
	60.	 Wood, M.F., Ghosh, N., Guo, X., Vitkin, I. A. Towards noninvasive glucose sensing using polarization analysis of multiply scattered 

light. In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues 12 (2008).

Acknowledgements
This work is supported by the National Science Foundation under SenSE-2037267.

Author contributions
H.L. designed and fabricated the hardware. H.L. implemented the Android application. L.G. and E.F. performed 
the user study. H.L. and C.G. designed and implemented the feature extraction process. H.L. and C.G. per-
formed the data preprocessing and data analysis. All authors contributed to the preparation of the manuscript.

Declarations

Competing interests
Forlenza conducts research supported by Medtronic, Dexcom, Abbott, Insulet, Tandem, Beta Bionics, and Lilly 
and has been a speaker/consultant/ad board member for Medtronic, Dexcom, Abbott, Insulet, Tandem, Beta 
Bionics, and Lilly. All other authors declare no competing interests.

Ethical approval
All methods and protocols included in this study are approved by the Institutional Review Board of Barbara 
Davis Center for Diabetes at University of Colorado Anschutz Medical Campus (COMIRB #22-0074).

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​9​2​5​1​5​-​6​​​​​.​​

Correspondence and requests for materials should be addressed to H.M.C.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2025) 15:8877 13| https://doi.org/10.1038/s41598-025-92515-6

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-92515-6
https://doi.org/10.1038/s41598-025-92515-6
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Clinical evaluation of a polarization-based optical noninvasive glucose sensing system
	﻿Result
	﻿Sensing concept
	﻿Sensing box design and usage
	﻿Glucose level estimation performance
	﻿Evaluation metric
	﻿Overall performance
	﻿Ablation study
	﻿Improper use detection
	﻿Image features
	﻿Feature selection
	﻿Stratified training



	﻿Sensitivity analysis
	﻿Sensing box
	﻿User
	﻿Demographics
	﻿Comparison to a prior work

	﻿Discussion
	﻿Methods
	﻿Clinical study protocol
	﻿Features extraction
	﻿Polarization-based optical features
	﻿Palm image features


	﻿System design


