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Abstract: Blood glucose monitoring is an essential aspect of disease management for individuals
with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are
invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors
have provided a more convenient alternative for people with diabetes to track their glucose levels
24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique
that works accurately and reliably in the wild. This review encompasses the current advancements in
noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these
systems, and offers an insightful outlook on existing and future solutions.
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1. Introduction

Diabetes affects 37.3 million people in the U.S. and the number is projected to in-
crease [1]. People with diabetes (PwD) have abnormal levels of insulin in their bodies,
causing their glucose levels to fluctuate uncontrollably. Failure to manage blood glucose
within a healthy range would damage blood vessels and further cause organ failures,
leading to complications such as heart disease, kidney disease, and stroke [2]. Therefore, it
is vital for PwD to monitor and regulate their blood glucose level.

Currently, over 48% of people with type 1 diabetes (T1D) in the U.S. utilize continuous
glucose monitors (CGMs) to closely monitor their glucose level [3]. In essence, the CGM
system works by inserting a flexible micro-needle beneath the skin, which measures the
glucose concentration within the body fluid known as the interstitial fluid (ISF). Previous
research has demonstrated a strong correlation between the ISF glucose level and the blood
glucose level [4,5], making CGMs an effective tool for individuals with T1D to manage
their glucose levels. Sensing glucose concentration in ISF does not require direct access
to the bloodstream and thus eliminates the inconvenience of frequent finger prickings.
However, the insertion of a micro-needle can still cause discomfort and potential bacterial
infection [6], highlighting the need for a noninvasive approach to improve the overall
experience of glucose management.

Noninvasive glucose sensing has been an active research topic in recent decades. To
assess the rationale and to demonstrate the feasibility of existing techniques, many studies
have used glucose solutions [7–9], synthetic tissues [10–13], and small animals [14–17]. While
these methods provide a good starting point, it is crucial to evaluate their performance in
real-world scenarios with actual users, particularly PwD.

This paper presents a comprehensive review of the current advancement in nonin-
vasive glucose sensing technologies in vivo. While there are a few similar reviews on
this topic [18–21], our focus here is specifically on the in vivo studies that demonstrate
the feasibility of these technologies for human use. The paper is structured as follows:
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we will start by summarizing the basics of diabetes, glucose management, different types
of biological fluids, and evaluation metrics used by diabetes communities in Section 2.
Then, we will discuss various noninvasive sensing techniques in Section 3, where these
techniques are categorized based on the sensing modality. Finally, we will discuss common
barriers associated with these techniques in Section 4 and provide expert opinions on
possible solutions to these barriers in Section 5.

2. Background
2.1. Diabetes

T1D is a chronic disease in which the pancreas produces little to no insulin. This is
caused by an autoimmune reaction where the body attacks and destroys the pancreatic
B-cells that are responsible for producing insulin [22]. T1D is the most common form of
diabetes in the pediatric population, and incidence rates continue to rise [23,24]. Usually,
when food is being digested, carbohydrates are broken down into glucose and absorbed
into the bloodstream. This increase in blood glucose level causes the release of insulin
from the pancreas. Here, insulin plays a crucial role in moving glucose from the blood into
the cells for energy production. This lowers the amount of glucose inside the blood and
maintains the glucose level in a healthy range. However, without sufficient insulin, glucose
accumulates in the bloodstream resulting in elevated blood glucose levels (hyperglycemia).

Chronic hyperglycemia is damaging to the vessels that supply blood to vital organs.
It leads to microvascular complications including blindness, kidney failure, peripheral
nerve dysfunction, as well as macrovascular complications such as heart disease and
stroke [2]. The landmark Diabetes Control and Complications Trial (DCCT) [25] showed
that intensive insulin treatment could reduce the risk of these complications but at the same
time increase the rate of low blood glucose level (hypoglycemia) [26,27], which may lead to
acute complications such as seizures and cognitive impairment [28]. Since there is no cure
for diabetes currently, it is crucial for PwD to properly manage their blood glucose levels.

2.2. Glucose Management

Effective management of diabetes requires intensive monitoring of blood glucose
levels and exogenous use of insulin as necessary. The main goal of T1D treatment is to
maintain the glucose level within the target range, which is generally considered to be
70–180 mg/dL [29]. The amount of time the glucose level is in the target range per day is
known as the time in range (TIR). People with T1D should aim to reach TIR > 70%, which
is shown to reduce the risk of long-term complications [30].

Assessments of blood glucose have traditionally been obtained via a blood sample
obtained by pricking the fingertip. The sample is then analyzed with a glucometer using a
test strip [31]. The test strip contains a glucose oxidase enzyme that reacts to the glucose
molecules in the blood sample and produces an electric current. The current is then picked
up by a glucometer and converted into a readable glucose level. This method has been
more accurate and effective than other self-monitoring approaches, though it is also highly
invasive and uncomfortable for PwD.

Alternatively, PwD can monitor their blood glucose levels using a continuous glucose
monitor (CGM), which reports glucose level every 1–5 min [32]. CGM is based on the same
working principle as a glucometer. Rather than measuring the blood glucose level directly,
a thin and flexible sensor is inserted under the skin and measures the glucose concentration
in the interstitial fluid (ISF) instead. It has been shown that the ISF glucose level is highly
correlated to blood glucose level [4,5] but with an average lag time of 8–10 min [33]. How-
ever, CGMs have a relatively low adoption rate because of the inconvenience of inserting
the sensor into the skin, the physical and psychological burden of having a visible device
on the body, and the high financial burden of replacing the biosensors regularly (every
7–14 days) [34]. Noninvasive glucose sensing is essential for broader adoption of real-time
glucose assessments, which can lead to better outcomes for PwD.
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2.3. Biological Fluid

The goal of noninvasive glucose sensing is to measure the blood glucose level without
direct access to the bloodstream. This poses a huge challenge as blood vessels are usually
hard to reach. They are located below the epidermis, which includes skin cells, proteins,
pigments, and more. Hence, prior studies have looked into alternative biological fluids
with similar glucose dynamics as blood glucose. The ISF layer is the most studied fluid
type for glucose sensing.

ISF is a layer of fluid that fills the space between cells. It acts as a buffer that brings
oxygen and nutrients from the blood capillaries to the cells and waste products back to
the blood. This leads to a high correlation between blood glucose and ISF glucose [4,5].
Additionally, ISF is close to the skin surface, making it an easier target than blood. ISF can
also be extracted from the skin to the surface via reverse iontophoresis (Section 3.3.1) and
analyzed with conventional glucose sensors.

The main limitation of ISF-based glucose sensing is the delay (8–10 min) between
blood glucose and ISF glucose, meaning that changes in blood glucose are reflected in ISF
glucose after a short amount of time [33]. The reason is that it takes time for glucose in
the bloodstream to diffuse into the ISF. This lag becomes longer during hypoglycemia as a
result of the body’s stress response. This is particularly undesirable because minute-by-
minute blood glucose values would be the most clinically beneficial during hypoglycemia
but this is when the lag is greatest. Given this, ISF-based methods have larger errors when
taking glucose measurements during the time when the glucose level is changing rapidly,
such as right after a meal or right after correcting hypoglycemia [35].

In addition to ISF, other types of biological fluid such as tears [36–41], sweat [42–48],
and saliva [49–53] have also been explored for glucose sensing. Overall, they have a slightly
longer lag time than ISF (∼10–15 min [54–56]), and glucose concentration in these types of
fluids is much lower than blood glucose (∼1–2%), making it hard to estimate glucose level
accurately [57–60]. The weak correlation of these biological fluids with blood glucose is
also a limiting factor [61,62]. Table 1 provides a summary of different types of biological
fluids used in prior literature for glucose sensing.

Table 1. A summary of biological fluids including tears, sweat, saliva, ISF, and ISF extracted from the
skin to the surface by reverse iontophoresis (RI) are presented. Note that the content in the extracted
ISF differs with the ISF inside the skin (Section 3.3.1).

Biological Fluid Lag Time Glucose Advantages Disadvantages Maturity

Tears [54,63] ∼15 min ∼2% of blood
• Less interfering substances
• Relatively easy to collect

• Low glucose
• Weak correlation Low

Sweat [62] ∼10 min ∼2% of blood • Easy to collect
• Low glucose
• Weak correlation
• Affected by environment

Moderate

Saliva [61] ∼15 min ∼1% of blood • Easy to collect
• Low glucose
• Weak correlation
• Food particles

High

ISF [4,5] ∼8–10 min similar to blood
• High glucose
• Good correlation

• Hard to reach
• Interfering substances High

ISF (RI) [64] ∼15–20 min ∼1% of ISF
• Good correlation
• Relatively easy to collect

• Low glucose
• Skin irritation
• Affected by sweat

High
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2.4. Evaluation Metrics

In the diabetes research community, researchers and clinicians use various metrics
to evaluate the clinical accuracy of glucose sensing systems. The most commonly used
one is Clarke’s error grid analysis, proposed by Clarke et al. in 1987 [65]. It is a graph
with the predicted glucose level against the reference glucose level, also known as the
ground truth (Figure 1a). The error grid is divided into five zones, namely Zones A, B, C,
D, and E. Zone A is the region where the predicted value is within 20% deviation from
the reference value and is considered clinically accurate. Zone B is outside of Zone A but
is still clinically acceptable. This means the predicted glucose value has an error larger
than 20% of the actual glucose level, but it will not lead to incorrect treatment decisions.
Zone C is the region where a much higher or lower glucose value is predicted, leading
to unnecessary treatment. For Zone D, the actual glucose value is either too high or too
low while the predicted glucose value is within the healthy range. This fails to detect
hyperglycemia or hypoglycemia, which is dangerous to the user. Finally, Zone E will lead
to an incorrect decision as the opposite event is reported; a hyperglycemia event will be
reported as hypoglycemia and vice versa.
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Figure 1. Error grids used for evaluation. (a) Clarke error grid; (b) consensus error grid for type 1
diabetes; (c) consensus error grid for type 2 diabetes.

In 2000, an updated error grid known as the consensus error grid was proposed by
Parkes et al. [66]. This error grid was based on a survey of 100 endocrinologists and
is shown in Figure 1b. Similar to the Clarke error grid, it is divided into five zones but
with slightly different definitions. Zone A refers to predictions that are clinically accurate,
where they will have no effect on clinical action. Zone B corresponds to altered clinical
action in which the error in the predicted glucose value will affect the treatment decision.
Zones C, D, and E are similar to Clarke’s error grid, which correspond to overcorrection,
failure to correct, and anti-correction. Similarly, a second consensus error grid with relaxed
restrictions was designed for people with type 2 diabetes on insulin therapy since this
population can potentially tolerate larger errors in the blood glucose value compared with
people with T1D (Figure 1c). However, the consensus error grid for type 2 diabetes is not
widely used because it has lower clinical performance.

Other than the error grids, the mean absolute relative difference (MARD) is also used
to describe the accuracy of glucose monitoring systems. It is the mean percentage error of
the predicted glucose value that is straightforward and easy to interpret.

MARD =
1
n

n

∑
|predicted glucose− reference glucose|

reference glucose

Finally, the percentage of agreement rates %15/15, %20/20, and %30/30 are used to
relax the requirement of these systems at a low glucose level. Take %15/15 as an example;
it describes the percentage of predictions where for each predicted-value–reference-value
pair: (i) if the reference value is greater than or equal to 100 mg/dL, then the predicted
value is within 15% of the reference value and (ii) if the reference value is smaller than
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100 mg/dL, then the absolute difference between the predicted value and the reference
value is smaller or equal to 15 mg/dL. This can be generalized into the following:

x%/x = %

{ |predicted-reference|
reference ≤ x% if reference ≥ 100 mg/dL

|predicted-reference| ≤ x if reference < 100 mg/dL

In 2020, The U.S. Food and Drug Administration (FDA) published an updated stan-
dard on Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use [67]. It
requires a glucometer to have 95% of the predicted glucose value to be within 15% of the
corresponding reference measurement across the entire claimed measuring range of the
glucometer. Additionally, 99% of the predicted glucose value has to be within 20% of the
reference measurement.

3. Noninvasive Sensing Techniques

Prior studies have proposed various noninvasive glucose sensing techniques. We
categorize these existing techniques into six types based on the sensing modality (Figure 2).
In particular, optical techniques have been actively studied the most. We further divide
them into two classes: (1) direct sensing techniques that measure the glucose’s optical
properties to infer the glucose level, and (2) indirect sensing techniques that detect the
change in properties of the tissue and blood to infer the glucose level.

3.3. Transdermal Techniques

Reverse Iontophoresis

Magnetohydrodynamic Extraction

Sonophoresis

► Extract Interstitial Fluid From the Skin

Photoplethysmography 

3.2. Indirect Sensing
► Based on Tissue Scattering 

Surface Plasmon Resonance

Optical Coherence Tomography

► Based on Blood Flow

3.4. Electrical Techniques
► Based on Dielectric Properties of Tissue

Microwave

Millimeter Wave

Terahertz Wave

► Based on Electrical Impedance of Tissue

Bioimpedance Spectroscopy

Metabolic Heat Conformation

3.5. Thermal Techniques
► Based on Heat Generation of Tissue

Emission Spectroscopy
3.6. Fusion Techniques
► Combining multiple techniques

Optical Techniques

3.1. Direct Sensing
► Based on Glucose Optical Properties

NIR Spectroscopy

MIR Spectroscopy

Photoacoustic Spectroscopy

Raman Spectroscopy

Polarimetry

Fluorescence

Figure 2. An overview of the sensing methods reviewed in Section 3.
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3.1. Optical Techniques—Direct Sensing

Glucose molecules possess multiple optical properties that can be exploited for glucose
sensing. As light penetrates the skin into the layers containing ISF, it interacts with the
glucose inside the fluid. By analyzing the relationship between the change in glucose level
and the corresponding change in the optical signal, we can directly predict the blood glucose
level. In this section, the principles behind the common approaches including infrared
absorption spectroscopy, Raman spectroscopy, photoacoustic spectroscopy, polarimetry,
and fluorescence are explored.

3.1.1. Infrared Absorption

One of the most extensively studied techniques for noninvasive glucose sensing
is the absorption-based approach. When light passes through the glucose molecules,
they selectively absorb some wavelength bands depending on the chemical structure.
This absorption is proportional to the concentration of glucose, and the glucose level can
be determined by observing how much light in those bands is absorbed. Note that for
absorption-based approaches performed on human, the infrared (IR) band, particularly the
mid-infrared (MIR) and the near-infrared (NIR) spectral region, is generally used. This is
because glucose’s molar absorptivity at the visible light and ultraviolet light (UV) region is
weak [68]. Additionally, exposure to UV and any other light with a shorter wavelength is
damaging to the DNA in cells as they are ionizing.

When IR light passes through a molecule, it causes the covalent bonds inside the
molecule to vibrate. The covalent bond is spring-like in nature; it can stretch and bend
when energy is applied. It vibrates mostly at the resonant frequency, where the frequency
of the light matches the vibrational frequency. This absorbance can be described using the
Beer–Lambert Law:

A = εCL,

where A is the absorbance, ε is the molar absorption coefficient dependent on the wave-
length λ, C is the concentration, and L is the optical path length. A can also be expressed
as transmittance such that A = log( I0

I ) where I0 is the incident intensity and I is the
transmitted intensity. This shows that given a light source of fixed wavelength and a
constant optical path length, the amount of light absorbed is directly proportional to the
concentration of a substance. Note that this only tells the presence of a certain chemical
structure rather than a molecule. Hence, it is important to focus on absorption wavelengths
that are relatively unique to glucose. Figure 3 shows the principle of sensing glucose using
the infrared absorption property.

Infrared Light Source DetectorSkin

Glucose

(a) Transmittance Configuration

Infrared Light Source Detector

Skin Glucose

(b) Reflectance Configuration
Figure 3. Basic setups for glucose sensing with infrared absorption. Specific bands of infrared light
are absorbed by glucose molecules, thereby causing the glucose’s covalent bonds to vibrate. The
amount of infrared light absorbed is proportional to the glucose concentration. Two configurations
are depicted here: (a) IR spectroscopy using the transmittance configuration where the amount of
light passing through a sample is measured. (b) IR spectroscopy using the reflectance configuration
where the light enters the sample, interacts with the glucose molecules, and scatters to the detector.

In the MIR region (4000–400 cm−1), glucose absorption peaks in this region are associ-
ated with the stretching and bending of C-C, C-H, and O-H bonds. Note that historically,
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MIR is described in the unit of wavenumber (cm−1) and NIR in terms of wavelength (nm).
The strongest band within this region is at 3550 cm−1 which is the fundamental frequency
for the stretching of the O-H bond and 2961 cm−1 and 2947 cm−1 for the stretching of the
C-H bond [69]. The region between 1200 cm−1 and 800 cm−1 is known as the fingerprint
region, which contains multiple bands corresponding to C-H bending and C-O-H bending.
Glucose has sharp absorption bands in this region, which are more distinguishable from
other substances also present in the skin (e.g., water and fat) [70]. Additionally, MIR light
scatters less on the skin compared with NIR [71]. The poor penetration depth (∼100 µm) of
MIR due to the strong absorption of water is the major drawback [72–74]. This means that
63% of the light is absorbed by the tissue after it penetrates the skin for 100 µm.

In the NIR region (700–2500 nm), the main absorption peak is located at 1600 nm
which corresponds to the first overtone of the C-H stretch. There are other absorption
peaks such as 960 nm (O-H second overtone), 1150 nm (C-H second overtone), 1450 nm
(O-H first overtone), and 1900 nm (combinations of the O-H stretch and H-O-H bending
of water) [75,76]. However, they are masked by other substances also present in the skin,
such as water, lipids, red blood cells, proteins, and acids [69,77], making them more
difficult to analyze. The absorption coefficient of glucose with respect to NIR is also
weaker compared with MIR because they correspond to overtones. Conversely, its higher
penetration depth of up to 5 mm [78] is the main advantage over MIR light.

Numerous attempts have been made to sense glucose noninvasively based on IR
absorption in persons with diabetes [79–82] and without diabetes [83–89] in recent decades.
Malin et al. [80] demonstrated the feasibility of sensing glucose with NIR diffuse reflectance
spectroscopy over the 1050–2450 nm wavelength range with seven participants. They
found that there are many factors that cause variations in tissue sampling, such as the
roughness and hydration of the skin surface, tissue displacement caused by contact pressure,
and skin temperature, which have to be considered to accurately predict glucose level.
Lam et al. [84] made a similar observation, where the effect of physiological influence is
also one of the sources of error. Both concluded that a calibration model developed for each
participant using partial least square regression can potentially solve the problem.

Since the skin condition affects system performance, Burmeister et al. [83] evaluated
the performance of NIR spectroscopy for predicting glucose level at six body sites, i.e.,
the cheek, lower lip, upper lip, nasal septum, tongue, and webbing tissue between the
thumb and forefinger. They found that glucose has overlapping peaks with water and
fat and that the tissue with the lowest fat will produce the least amount of noise. The
tongue has the least fat while the webbing has the most, which means measurement of the
tongue is preferred. Chen et al. [88] then studied the effect of finger contact pressure on the
performance of glucose sensing using MIR spectroscopy. The performance was improved
using firm finger pressure. It is suggested that applying pressure on the finger could flatten
the intertwined interface of the epidermis, which brings the dermis layer closer to the
surface so that more ISF can be sensed with the same penetration depth.

Instead of using a full IR spectroscopy setup, which is expensive and bulky, techniques to
minimize the sensing hardware have also been actively researched. Liakat et al. [85] proposed
the use of a hollow core fiber to deliver light from an external cavity QC laser. The backscat-
tered light from the skin is then captured using a bundle of six fibers and analyzed with a
commercial liquid nitrogen cooled mercury cadmium telluride detector. They verified the
setup with three participants without diabetes, where 84% of glucose predictions fall into
Zone A of the Clarke grid and the rest in Zone B. Haxha et al. [86] further miniaturized
the sensor to a wearable form factor. The proposed prototype measures the transmittance
of a single NIR diode of 940 nm across the finger. Similarly, Kasahara et al. [87] looked
at the most prominent wavenumber features in the MIR region that could lead to the
best performance, which are 1050 cm−1, 1070 cm−1, and 1100 cm−1. Both evaluated the
performance of their choices with a small number of persons without diabetes. While they
showed good performances using only a few wavelengths, more experiments are needed
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to verify the selection of wavelengths on PwD who have a large variation in glucose value
and people without various skin tones and conditions.

Deep neural networks can also be utilized to further improve the performance of these
sensing systems. Han et al. [89] improved the performance of the NIR absorption approach
by combining the partial least square regression approach with a stacked auto-encoder
(SAE) deep neural network. They suggested that the addition of SAE can better suppress
the influence caused by individual differences. The experiment with 19 participants without
diabetes successfully predicted the blood glucose level with 97.96% predictions in Zone
A of the Clarke error grid. Srichan et al. [79] trained a shallow dense neural network to
predict blood glucose level using NIR data and personalized medical features that include
gender, age, weight, height, and blood pressure. Using a training dataset of 401 participants,
they achieved a 96.6% accuracy on a testing dataset of 234 individuals, with all predictions
falling within Zone A of the Clarke error grid. These results showed that the use of neural
networks can potentially improve the performance of these sensing systems.

Companies have been developing prototypes based on IR spectroscopy. An Israeli com-
pany developed OrSense in 2007, a noninvasive glucose sensor using NIR spectroscopy [90].
The proprietary technique used is termed occlusion spectroscopy, where two NIR spectra
are obtained: one normally at a finger using a ring-shaped device and the other one when
the device applies an over-systolic pressure to the finger to occlude the blood flow. They
claim that this creates a new blood dynamic where the unique signal can be analyzed to
infer the glucose concentration in the blood. The system was evaluated with 12 persons
with T1D and 11 with Type 2 Diabetes. They achieved a 17.2% MARD with 69.7% predic-
tions in Zone A and 25.7% in Zone B. Even though they obtained CE approval, it has never
been commercialized. Another Israeli company developed TensorTip Combo Glucometer
in 2018, which is commercially available [91]. The system uses four monochromatic light
sources in the visual to IR spectrum (625 nm, 740 nm, 850 nm, and 940 nm) and measures
the amount of light traversing across the fingertip to the image sensor. Due to individual
differences, the system requires 25 calibrations measured at different hours of the day for
several days so that a personal reference model can be generated for glucose prediction. A
clinical study [92] has been performed with 36 participants, which included both people
with and without diabetes. They achieved a 14.4% MARD with all of the predictions falling
in Zones A and B of the consensus error grid. The performance is one of the best among
all the other commercialized products, but the performance has to be further improved to
reach FDA standards. The large number of calibrations required for the device to function
accurately is another drawback of this device.

To summarize, IR spectroscopy is a promising candidate for detecting glucose nonin-
vasively due to the preferential absorption of infrared light by the glucose molecules. It has
been demonstrated that an IR spectrum contains rich information to predict glucose con-
centration. However, the selection of wavelengths remains a challenging problem. NIR has
a deep penetration depth in the skin; thus, it also interacts with many interfering molecules
that could mask the glucose signal. Conversely, MIR has a poor penetration depth owing
to the strong water absorption, but the unique absorption peaks in the spectrum are more
distinguishable from other coexisting ISF components. In addition, the NIR laser is a more
cost-effective option, but the recent development of quantum cascade lasers (QCLs) has also
substantially reduced the cost of the MIR laser. Another obstacle faced by IR spectroscopy
is the scattering of light on the skin, which is dependent on conditions such as blood flow,
hydration, temperature, and the skin’s subsurface structure. There could be huge variations
between individuals and testing sites, which may require additional calibrations.

3.1.2. Photoacoustic Spectroscopy

Photoacoustic spectroscopy (PAS) combines two modalities for sensing: optical absorp-
tion and ultrasound detection. The photoacoustic (PA) effect occurs when light is absorbed
by a molecule and converted into heat energy, causing an expansion in the tissue. This
causes an increase in pressure and subsequently produces acoustic waves that propagate to
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the tissue surface, which can be detected with an acoustic sensor [93]. The intensity of the
acoustic wave is proportional to the amount of energy absorbed [94].

Similar to IR spectroscopy described previously in Section 3.1.1, IR light is used in
PAS glucose sensing. However, rather than measuring the light absorbed by the tissue,
the intensity of the acoustic wave generated due to the PA effect is detected instead. This
offers a few additional advantages over IR spectroscopy: (1) it overcomes the problem of
light scattering and reflection since it is only sensing acoustically, which is particularly
useful when probing the skin as the skin is highly scattered; (2) the sensing performance is
limited by thermal noise only, which is lower compared with the noise present in optical
approaches [95]; and (3) the attenuation of acoustic waves by water is weaker, which further
increases the penetration depth and the amount of ISF being probed. Figure 4 shows the
principle of sensing glucose using the photoacoustic effect.

Light Source Resonance Chamber

Glucose

Infrared Light

Skin

Acoustic 
Detector

Figure 4. Basic setup for glucose sensing with photoacoustic spectroscopy. When the glucose
molecules absorb some specific bands of infrared light and their covalent bonds start to vibrate,
acoustic waves are generated, which then propagate to the skin surface and can be captured with an
acoustic sensor. The intensity of the acoustic wave is proportional to the amount of light absorbed,
which is then proportional to the glucose concentration.

Various attempts have been made throughout the recent decades [70,96–99]. For
example, Pleitez et al. [100,101] used an external cavity quantum cascade laser (EC-QCL)
to rapidly scan the skin in the mid-infrared fingerprint region and to measure the PA signal
with a windowless resonant cell. A study with one person with diabetes and one person
without diabetes showed promising results, with most predictions falling in Zone A of
Clarke’s error grid and the rest in Zone B.

It is noted that the use of EC-QCL coupled with the resonant cell allows for a high
signal-to-noise ratio and fast spectra acquisition. However, the skin condition is a major
concern since factors like the thickness of the stratum corneum (outermost layer of the
epidermis) could substantially affect the amplitude of the signal. Therefore, a testing site
with a thin stratum corneum is crucial to the performance of a PAS system. Bauer et al. [102]
looked into four body parts, i.e., the thumb, the index finger, the palm, and the arm and
determined the optimal location for sensing. A study with one person with diabetes and
four persons without diabetes verifies that the thumb is found to be the optimal site due
to the thin stratum corneum, minimal fat layer, and good blood circulation. The index
finger was next, with a similar performance. Another factor that affects the performance
is the PA signals produced by confounding substances that may mask the glucose signal.
Sim et al. [103] studied how sweat and sebum components present on the hand could
affect the performance of predicting glucose. A 2D position image of the fingertip was
acquired, and the locations without any eccrine sweat glands were identified. A spectrum
in the mid-infrared region was obtained at these non-secreting locations and was analyzed
with partial least square regression. Five experiments with one person with diabetes and
another without diabetes resulted in 14.4% MARD with 70% of the prediction in Zone A of
Clarke’s error grid and the remaining 30% in Zone B.

PAS can generally penetrate deeper than pure IR spectroscopy approaches. Since the
water absorbs less acoustic signals than optical signals, this allows acoustic waves generated
at a deeper depth of the skin to propagate to the surface for detection. Additionally, it is
unaffected by the scattering of light on the surface as it does not affect the acoustic sensor.
However, the use of optics and acoustics results in a relatively complex setup, which could
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be one of the main reasons why there is currently no announced commercial system that
uses PAS to sense glucose level.

3.1.3. Raman Spectroscopy

The approaches introduced earlier are based on light absorption, where the amplitude
of light changes after interacting with glucose; for Raman spectroscopy, the change in
wavelength is observed instead. Normally, when light interacts with molecules, the photons
are absorbed by the molecules, which cause the molecules to vibrate, and then the photons
are immediately re-emitted at the same wavelength. This is called elastic or Rayleigh
scattering. On some rare occasions, the molecule gains vibrational energy and is promoted
to a virtual excited state, while the photon loses energy and is scattered at a lower energy
level, causing a shift in wavelength. This is known as inelastic or Raman scattering,
and it typically occurs in a small fraction of the incident light, roughly 10 in a million
photons [104]. By filtering out the Rayleigh scattered light and analyzing only the Raman
scattered light using a spectrometer, bands of light at the lower energy levels with longer
wavelengths than the incident light can be observed, which are called Stokes. Conversely,
a molecule that is already in a virtual excited state can gain energy from a photon but
then decay back to the ground energy state. In this case, the photon will be re-emitted at a
higher energy level with a shorter wavelength and the resulting bands on the spectrum are
called anti-Stokes. In terms of quantum mechanics, Stokes and anti-Stokes have the same
probability to occur, but since there are more molecules in the ground state than the excited
states, the Stokes will have higher peaks than the anti-Stokes. Hence, the Stokes have a
stronger signal and are usually measured in Raman spectroscopy.

The wavelengths of the bands generated from Raman scattering correspond to the
differences in the vibrational energy levels. This is determined using the chemical structure
of the molecule, and therefore, the Raman spectrum is typically unique to the molecule.
For glucose molecules, the peaks in the Raman spectrum can be found at 911, 1060, and
1125 cm−1 [17,105]. Figure 5 shows the principle of sensing glucose with Raman spectroscopy.

Light Source Skin

Glucose

Incident Light

DetectorFilter

Rayleigh Scattering

Raman Scattering

Figure 5. Basic setup for glucose sensing with Raman spectroscopy. When the glucose molecules
absorb photons, they vibrate and the photons are re-emitted immediately at the same wavelength,
known as Rayleigh scattering. On rare occasions, Raman scattering occurs and the photons are
re-emitted at different wavelengths instead. These wavelengths are unique to the molecular chemical
structure and can be analyzed by using a filter to block off the incident wavelength.

There are a few studies that have explored the use of Raman spectroscopy to predict
blood glucose level noninvasively [17,105–110]. Ebejder et al. [108] first demonstrated the
feasibility of measuring glucose transcutaneously with Raman spectroscopy. They found
that the dominant features in the Raman spectrum are mainly collagen I, the main compo-
nent of the dermis, and triolein, which can be found in subcutaneous fat. These features
vary a lot among the participants, suggesting a large variation in chemical compositions.
Since these spectral features are relatively distinct from the peaks of glucose [111], this
allows for the change in glucose concentration to be observed and measured. Using an
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excitation light of 830 nm, a study with 17 participants without diabetes was performed
and 461 Raman spectra were collected. The spectra data were analyzed with partial least
squares regression, and a 7.8% MARD was achieved. A universal calibration is crucial to
significantly reduce the number of calibrations performed by the users. Lipson et al. [109]
looked at the requirements for a universal calibration in Raman spectroscopy such that a
priori information of a person or ground truth of the blood glucose level are not necessary.
They first assumed that the Raman spectrum obtained from the skin contains signals from
blood, ISF, and intracellular fluid and that the proportions could be site dependent and then
formulated an optimization with the volumes of the fluids as the variable. To conclude,
a dataset that includes 30 persons with spectra collected from more than 300 separate
skin sites is sufficient to provide a universal calibration. Li et al. [106] then noticed the
poor penetration depth of the excitation light and proposed sensing the glucose in the
microvessels of the nailfold, which is the small area of the skin beneath the nail. This
allowed them to probe at the blood glucose directly. Experiments with 12 people without
diabetes resulted in all predicted values falling within the clinically acceptable region.

In 2018, a prototype called GlucoBeam that uses Raman spectroscopy to sense glucose
concentration was developed and is in the process of commercialization [107,110]. They
performed a comprehensive clinical study with PwD who experience a much larger range
of glucose levels. With a cohort of 15 PwD and a duration of 28 calendar days for each
person, 94% of the predicted glucose values fell in the clinically acceptable zones, with the
remaining values falling within Zone C (5.8%) and Zone D (0.5%).

The problems affecting Raman spectroscopy are similar to those of IR spectroscopy. It
has a limited penetration depth and is affected by physiological effects and environmental
noises. Additionally, the Raman signal is very weak due to its low-occurrence nature. On
the contrary, it is less affected by water compared with IR spectroscopy since water is a
weak Raman scatterer. Additionally, Raman systems are robust against the scattering of
light on the skin since the wavelength of the incident light is filtered at the detector.

3.1.4. Polarimetry

Glucose is optically active, meaning the direction of linearly polarized light will
be rotated when it passes through a glucose solution. Glucose has 4 chiral centers and
16 stereoisomers, i.e., molecules with the same composition but different spatial configura-
tions. A pair of stereoisomers that are a mirror image of each other but non-superposable
are called enantiomers, which rotate the plane of polarization by the same amount but
in opposite directions. If an equal amount of the two enantiomers are mixed together,
a racemic mixture is formed and it is optically inactive. However, the naturally occur-
ring form of glucose is called d-glucose, or dextrose, which is one of the enantiomers
that rotates light (589 nm) clockwise by +52.7° dm−1 (g/mL)−1 at 20 °C [112]. The other
enantiomer, i.e., l-glucose, is not naturally occurring but can be synthesized in a lab. It is
generally accepted that l-glucose is not found in living organisms, but Stefan et al. [113]
detected a negligible amount in human blood. The amount of rotation can be represented
by the following equation:

α = R(λ, T) · C · 〈L〉

where α is the measured optical rotation, R(λ, T) is the rotary power of with respect to
wavelength λ and temperature T, C is the concentration of glucose, and 〈L〉 is the optical
path length [114]. If the wavelength, temperature, and optical path length are kept constant,
then the measured optical rotation is directly proportional to the concentration of glucose
in the sample. Figure 6 shows the principle of sensing glucose with polarimetry.
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Figure 6. Basic setup for glucose sensing with polarimetry. Light first passes through a polarizer
and becomes linearly polarized. The polarized light enters the skin and the plane of polarization is
rotated upon interaction with the glucose molecules. The rotated polarized light then leaves the skin
and is analyzed to infer glucose concentration.

Prior studies have extensively studied the use of polarimetry to measure glucose in an
aqueous solution [7,115–119]. These studies reported a high correlation between the light
signal and the glucose concentration. Aqueous humor, a liquid found inside the anterior
and posterior chambers of the eye, has also been studied with promising results [120–122].
Experiments performed on rabbits have demonstrated the high accuracy of the method,
but the main obstacles are the change in corneal birefringence caused by motion artifacts
which may mask the signature of glucose, and the difficulty of mounting the sensing
equipment on the eye still remains unsolved. To sense the glucose in ISF, the real challenge
lies in handling the scattering of light at the skin. Li et al. [123] sensed the ISF glucose
by measuring the change in light intensity when polarized light is rotated by glucose
molecules. Linearly polarized light is projected onto the skin, which after interacting with
the glucose in the ISF layer, is reflected onto a second polarizer. The amount of light passing
through the whole setup is proportional to the concentration of glucose. To remove the
depolarized light caused by the scattering, two orthogonal linearly polarized lights were
used to cancel out the effect. With 41 participants including people with and without
diabetes, they achieved a performance of 10% MARD with 89% in Zone A and 11% in Zone
B of the Clarke error grid.

While glucose is a good optical rotator, the highly scattering properties of skin depo-
larize most of the light, leaving only a tiny portion of the reflected light still carrying the
polarization information [124]. Additionally, the poor selectivity of this technique due to
the abundance of other optical rotators in the skin (e.g., albumin and collagen) is another
problem that has to be solved. This explains why polarimetry generally does not work well
with the skin.

3.1.5. Fluorescence

A molecule is considered to be fluorescent if it absorbs light of a specific wavelength
and re-emits at a different wavelength. The outcome is similar to Raman scattering but it
follows a very different physics principle. Glucose itself is not fluorescent but can bind
to some proteins and can alter their fluorescence. Specifically, the wavelength of the light
re-emitted by these proteins is dependent to the glucose concentration, which can be
observed directly as color changes. This requires direct access to the glucose-containing
fluid, which is unsuitable for interstitial fluid. Other biological fluids that can be easily
collected would be beneficial for this method. In particular, Cui et al. [48] proposed using
carbon quantum dot nanomaterials to detect glucose in sweat. However, sweat glucose
has a weak correlation with blood glucose and has a very low glucose concentration (see
Table 1). Also, the colors can only be classified into several groups (e.g., hypoglycemia,
normal, and hyperglycemia) and not an actual glucose level.

3.1.6. Summary

In this section, we look into the various optical techniques that directly sense the
optical properties of glucose molecules to infer blood glucose level. We go through the
principle of each technique and its related publications. A summary of these techniques
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is presented in Table 2 and a comparison of their performances is provided in Table 3,
highlighting the wavelength of the light source used and the sensing location.

Table 2. A summary of optical techniques for direct sensing based on optical properties of glucose
and their characteristics. The signal-to-noise ratio is used to compare the power of the signal with
the background noise when a higher value is desired. The penetration depth describes the distance
the light can penetrate, where around 37% (1/e) of the light still remains and is not absorbed by the
tissue. The scattering of light on the skin is wavelength-dependent, and the effect is more prominent
with shorter wavelengths. Finally, the cost is mostly determined by the light source and the sensor.

Technique Signal-to-Noise Ratio Penetration Depth Affected by Scattering Cost

Near-Infrared Spectroscopy Low Moderate Moderate Low

Mid-Infrared Spectroscopy Moderate Low Low Moderate

Photoacoustic Spectroscopy
NIR—Low
MIR—Moderate

NIR—Moderate
MIR—Low None High

Raman Spectroscopy High NIR—Moderate
MIR—Low

None High

Polarimetry Low Low High Low

Fluorescence High None None Low

3.2. Optical Techniques—Indirect Sensing

Direct measurement of the properties of glucose inside the skin is difficult; hence,
researchers look into the effects of glucose on the tissues and blood. These properties
are usually easier to sense, but they have a weaker correlation with blood glucose since
many other factors, including physiological and environmental factors, can also affect them.
The optical techniques including Surface Plasmon Resonance (SPR), Optical Coherence
Tomography (OCT), and Photoplethysmography (PPG) are discussed in this section.

Surface Plasmon Resonance. This phenomenon occurs when the electrons on a metal
surface are excited by an incident light at a certain angle and then propagated along the
surface. The angle that triggers SPR depends on the analyte’s refractive index at the metal
surface. Since the amount of glucose in the ISF changes its refractive index, we can measure
the refractive index of the tissue to predict glucose concentration. This has been studied
in [125,126] to sense glucose solution, but no work has been carried out with human skin.
Aside from the refractive index being easily affected by many factors, such as skin hydration,
temperature, and sweating, the insensitivity towards small glucose concentrations is the
main culprit.

Optical Coherence Tomography. This technique detects the change in the scattering
coefficient caused by glucose to predict glucose concentration. The change in scattering
coefficient of the tissue is caused by a mismatch of the refractive index between the ISF and
the membranes of the cells in the tissue, which affects light scattering [127]. To sense the
change in scattering coefficient, coherent light is split into two beams with one directed
to the skin. The reflected light from the skin is combined with the other beam to produce
an interference pattern. The interference produced is then proportional to the glucose
concentration. This has been explored in previous studies [128–133], but similar to SPR, the
refractive index and the scattering coefficient are affected by many other factors.
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Table 3. A summary of optical techniques for direct sensing with in vivo study sorted according to year of publication. The wavenumber of the MIR light is
converted to wavelength for easier comparison (10,000,000/wavenumber = wavelength). Participants include people with type 1 diabetes or type 2 diabetes, and
people without diabetes. Zones A and B refer to Clarke’s error grid (or the consensus error grid if specified). Other evaluation metrics are also used in some other
papers, including correlation coefficient (r), coefficient of determination (R2), mean absolute difference (MAD), and root mean square error (RMSE).

Ref. Year Technique Wavelength nm Location
Clinical Study

Study Result
N w/ Diabetes w/o Diabetes

[80] 1999 NIR Spectroscopy 1050–2450 Forearm 7 Yes No MARD of 3 participants: 9.1%, 17.6%, 3.6%

[83] 1999 NIR Spectroscopy 630 Multiple 19 n/a n/a Tongue is most reliable for glucose sensing

[82] 2002 NIR Spectroscopy 1050–2450 Forearm 9 Yes No MARD: 20.6%; Zone A: 63.5%; Zone B: 34.9%

[81] 2003 NIR Spectroscopy Unspecified Forearm 1 Yes No r: 0.928; standard error of prediction: 32.2 mg/dL

[108] 2005 Raman Spectroscopy 830 Forearm 17 No Yes MARD: 7.8% ± 1.8%; R2: 0.83 ± 0.10

[96] 2005 Photoacoustic Spectroscopy 9259, 9381 Forearm 1 No Yes A positive correlation is observed

[90] 2007 Occlusion Spectroscopy 10 Unspecified Finger 23 Yes No MARD: 17.2%; Zone A: 69.7%; Zone B: 25.7%

[109] 2009 Raman Spectroscopy 670, 827, 829 Forearm 30 Yes No Zone A: 53%; Zone B: 39%; Mean absolute difference: 38 mg/dL

[84] 2010 NIR Spectroscopy 905–1701 Finger 36 No Yes r: 0.48; RMSE: 1.34 mmol/l; Zone A + B: 100%

[97] 2012 Photoacoustic Spectroscopy 9225, 9488 Palm 2 No Yes r: 0.7. Recommends using 6–10 IR wavelengths

[101] 2013 Photoacoustic Spectroscopy 8197–10,000 Hypothenar 2 Yes Yes MAD: 11 mg/dL (without diabetes) and 15 mg/dL (T1D)

[100] 2013 Photoacoustic Spectroscopy 8032–10,000 Hypothenar 1 No Yes A windowless PA cell design is proposed and verified

[85] 2014 MIR Spectroscopy 8000–10,000 Palm 3 No Yes Zone A: 84%

[98] 2015 Photoacoustic Spectroscopy 905 Palm 30 No Yes MARD: 9.61% ± 10.55%. Zone A: 87.24%; Zone B: 12.76%

[86] 2016 NIR Spectroscopy 940 Finger 5 No Yes Zone A + B: 100%

[70] 2016 Photoacoustic Spectroscopy 8475, 9259 Finger n/a n/a n/a R2 = 0.8, uncertainty of ±30 mg/dL at 90% confidence level

[99] 2017 Photoacoustic Spectroscopy 905, 1550 Forefinger 24 No Yes MARD: 8.84%; Zone A: 92.86%; Zone B: 7.14%

[91] 2018 NIR Spectroscopy 625, 740, 850, 940 Finger 19 n/a n/a
Result of 3 Studies: MARD: 17.9%, 14.9%, 17.1%;
Zone A + B: 100%, 100%, 98.8% (consensus)

[92] 2018 NIR Spectroscopy 625, 740, 850, 940 Finger 36 Yes Yes MARD: 14.4%; Zone A: 96.6%; Zone B: 3.4% (consensus)

[87] 2018 MIR Spectroscopy 1050, 1070, 1100 Finger 6 No Yes r: 0.36; Zone A + B: 100%
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Table 3. Cont.

Ref. Year Technique Wavelength nm Location
Clinical Study

Study Result
N w/ Diabetes w/o Diabetes

[110] 2018 Raman Spectroscopy 830 Thenar 35 Yes No MARD: 25.8%; Zone A + B: 93% (consensus)

[102] 2018 Photoacoustic Spectroscopy 8032–9852 Multiple 5 Yes Yes MAD 16 ± 7 mg/dL. Thumb is most suitable for glucose sensing

[103] 2018 Photoacoustic Spectroscopy 8065–10,526 Finger 2 Yes Yes MARD: 14.4% ± 10.5%; Zone A: 70%; Zone B: 30%

[88] 2019 MIR Spectroscopy 6250–12,500 Finger 6 No Yes 95% certainty and 100% comparability with firm finger pressure

[106] 2019 Raman Spectroscopy 785 Nailfold 12 No Yes RMSE = 0.27 mmol/L; R2 = 0.98; Zone A + B: 100%

[123] 2020 Polarimetry 450, 520, 658 Palm 50 Yes Yes MARD: 10.0%; Zone A: 89%; Zone B: 11%; r: 0.91; p = 1.6× 10−143

[89] 2021 NIR Spectroscopy
1050, 1219, 1314,
1409, 1550, 1609 Finger 19 No Yes r: 0.92, Zone A: 97.96%

[107] 2021 Raman Spectroscopy 830 Thenar 15 Yes No MARD: 26.3% ± 10.8%; Zone A + B: 93.6%

[79] 2022 NIR Spectroscopy 850, 950, 1150 Finger 635 Yes Yes Zone A: 100.0%
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A modified version of OCT is ultrasound-modulated optical tomography (UOT). In
UOT, an additional ultrasound is focused on the sensing region. The ultrasound will change
the refractive index and displace the scatterer in the target region. This can add an extra
dimension to the data and potentially improve the performance. However, this has only
been tested with a vessel-mimicking phantom [134] and achieved a 26.6% MARD.

Photoplethysmography. This technique involves predicting blood glucose levels from
the PPG signal [135–140]. It has attracted increasing attention in recent years due to its
low cost and wide adoption in smart devices [141]. A PPG sensor uses light to measure
the volumetric changes in the blood inside the skin. A common application of a PPG
sensor is to measure heart rate. It is proposed that PPG can also be used to measure
glucose concentration. The high-level idea is that more glucose inside the blood can cause
resistance in the blood flow. The increased blood viscosity is then reflected in the PPG
signal. Typically, the PPG signals are analyzed with a deep learning model, and hence, the
correlation between PPG and blood glucose is not well understood. Figure 7 shows the
principle of sensing glucose with PPG.

ß

Light Source DetectorBlood Vessel Inside Skin Process PPG Signal

Figure 7. Basic setup for glucose sensing with photoplethysmography. The amount of light absorbed
reflects the volume of blood in the skin. Typically, a basic system uses a green or a red light to capture
the PPG signal while a pulse oximeter uses a red and an infrared light to additionally deduce the
oxygen saturation. The PPG signal is then further processed to infer the glucose sensing, usually with
a deep learning model.

3.3. Transdermal Techniques

Rather than sensing glucose through the skin, the transdermal techniques enhance
the permeability of the skin so that the ISF can be extracted to analyze directly. Then, the
extracted ISF is stored in a medium such as a hydrogel and the glucose in the extracted ISF
can be detected with a conventional glucose sensor, such as an amperometric glucose test
strip. Three methods are explored by the researchers, and they are reverse iontophoresis,
magnetohydrodynamic, and sonophoresis.

3.3.1. Reverse Iontophoresis

Iontophoresis is the process of applying a small electrical current to help charged and
polar compounds move across the skin at rates higher than their passive permeabilities [142].
It is used for electrically controlled drug delivery due to the often polar and charged nature
of the drugs compound [143]. On the other hand, the symmetry of iontophoresis means that
it can also extract compounds from the skin, which is known as reverse iontophoresis. The
two principal mechanisms involved in the process are electromigration and electroosmosis.
The former describes the movement of ions across the skin due to the flow of current. With
sodium (Na+) and chloride (Cl−) being the major ions in the interstitial fluid, applying
a current to the skin will attract the ions to move to the oppositely charged electrodes.
As the skin is negatively charged at physiological pH, the majority of the current carriers
through the skin are sodium ions [144,145]. Then, this ion concentration gradient creates an
osmotic pressure, causing the ISF to move toward the cathode along with other dissolved
compounds such as glucose via electroosmosis. This effectively extracts ISF from the skin
to the cathode. Finally, the glucose inside the ISF is measured using conventional glucose
sensors. Figure 8 shows the principle of sensing glucose using reverse iontophoresis.
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Figure 8. Basic setup for glucose sensing using the reverse iontophoresis technique. A constant cur-
rent is applied to increase the permeability of the skin and to extract the ISF to a reservoir. The glucose
concentration in the extracted fluid is then determined using a conventional electrochemical sensor.

One of the earliest FDA-approved products that use this technology is the GlucoWatch
Biographer [64,146–148]. It employs two pairs of disposable electrodes for ISF extraction
and amperometric glucose sensing, which have to be calibrated with a finger prick test
and replaced every 12 h. In the original study, it achieved a promising result with over
96% of the predictions falling in the clinically acceptable region of Clarke’s error grid.
However, sweating on the skin contributes to errors in these measurement since there is
also glucose present in sweat. More importantly, due to the slow ISF extraction process
and the low glucose concentration in the extracted ISF, the extraction process has to be
performed over a long duration. This fails to detect rapid changes in glucose level which is
crucial in glucose monitoring. Moreover, the prolonged electric current applied to the skin
has caused discomfort and irritation to many users, which is also the major downside that
is leading to the discontinuation of the device.

Many studies tried to solve the skin irritation problem by using a lower current [149–151].
Bandodkar et al. [150], in particular, proposed a body-compliant wearable electrochemical
device that is printed on an elastic substrate skin and can be applied to the skin similar to a
temporary tattoo. Its low cost, flexibility, and small form factor make it an attractive solution
for glucose monitoring. A study with two persons without diabetes over a duration of 1 h
demonstrates the feasibility of this method. Subsequent improvements have been proposed
for this tattoo-based sensor. Since the proposed sensor is designed for a single measurement,
De et al. [151] have extended the tattoo-based sensor for continuous monitoring for up
to 8 h. Cai et al. [152] used textile enzymatic electrodes to improve the air permeability
of the sensor while maintaining its electrochemical properties. Yao et al. [153] combined
the ISF extraction and the glucose sensing into a two-electrode design to further reduce
the size of the device. Xu et al. [154] improved the sensitivity of the glucose sensor at low
concentrations by using a highly conductive hydrogel.

Efforts to miniaturize the device and to improve the accuracy have been made [155,156],
but it is still a long way away from approaching commercialization. For instance, including
factory calibration of the sensors is greatly beneficial to the user experience as it removes the
need to calibrate the sensor with a finger prick test. The extraction current and duration as
well as the sensing frequency have to be optimized so that it is comfortable for the user. The
noises caused by the presence of substances such as sweat and other environmental factors
have to be resolved until transdermal techniques can be used for continuous monitoring.

3.3.2. Magnetohydrodynamic Extraction

Recently, in 2021, a technique to extract ISF by applying magnetic and electric fields
has been proposed [157]. In essence, the magnetohydrodynamic (MHD) effect is produced
when a magnetic field and an electric field are simultaneously applied to the skin. This will
generate a Lorentz force on the interstitial fluid and cause it to flow outward. Using porcine
skin, it was demonstrated that a faster extraction with less amount of energy is applied to
the skin compared with reverse iontophoresis. The group further produced a prototype
for noninvasive glucose sensing by integrating the MHD fluid extract with a custom-built
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glucose sensor [158]. In vitro experiments with glucose solutions and ex vivo experiments
with porcine skin and a subsequent pilot study with persons without diabetes [159] have
shown promising prospects for this method.

This extraction technique greatly improves the experience of ISF extraction and solves
some of the problems faced by reverse iontophoresis methods, in particular, the long ISF
extraction duration and the lowered glucose concentration in the extracted ISF. However,
more experiments have to be conducted to verify the effectiveness and reproducibility of
this technique.

3.3.3. Sonophoresis

Ultrasound has been used to enhance the permeability of skin for drug delivery. While
the exact mechanism is not known, it has been theorized that the permeabilization is caused
by the cavitation of the stratum corneum [160]. Focusing the ultrasound waves on the
skin causes high pressures and temperatures in the area, which leads to the formation of
bubbles within the stratum corneum. These bubbles are then merged into larger bubbles,
eventually creating a path that transverse across the stratum corneum.

Sonophoresis has been used mainly for drug delivery, but a few studies have also
looked into extracting ISF using this method [161,162]. It can extract ISF glucose faster
than reported reverse iontophoresis techniques and without any pain reported by the
participants. However, the glucose level measured from the extracted ISF does not correlate
well with the blood glucose level, indicating that some form of alteration to the fluid is
made during the extraction.

3.4. Electrical Technique

The amount of glucose inside the blood affects the electrical properties of the tissue,
such as the dielectric properties and the bioimpedance. Several techniques have exploited
these properties to sense glucose noninvasively including microwave, millimeter wave,
terahertz wave, and bioimpedance spectroscopy.

Microwave and Millimeter Wave. Microwaves [163–168] and millimeter waves [169–172]
have been proposed for sensing glucose concentration. Due to their relatively long wave-
lengths (1 mm–1 m) and corresponding low frequencies (300 GHz–300 MHz), these methods
have a higher penetration depth than optical methods. They can reach millimeters or even
centimeters under the skin [173], where there are abundant blood vessels. This allows direct
access to the blood glucose instead of inferring indirectly from ISF glucose. Blood glucose
is known to affect the dielectric properties of the blood [174]. Assuming the change in
minerals in the blood plasma has minor or no effects on the electrical properties, the glucose
concentration and the dielectric properties can be fitted into a Cole–Cole model [175]. Then,
the subtle change in dielectric properties of human tissues can be picked up by a microwave
sensor and in turn, used to estimate the glucose level. Even though the relationship be-
tween blood glucose and the tissue’s dielectric properties is not fully understood [176,177],
these techniques remain attractive alternatives to researchers as they are usually easier to
implement and are more cost-effective.

Terahertz Time-Domain Spectroscopy. Ultrashort electromagnetic waves in the band
where infrared and microwave overlaps is used to probe the skin for sensing glucose
concentration in the tissue [178–180]. The relationship between the absorption coefficient
of Terahertz (THz) radiation and the glucose concentration is not well-defined, but one
group suggests that the absorption coefficient is inversely proportional to the glucose
concentration as a higher glucose concentration result in a relatively lower water content,
which is the main component that absorbs THz [181,182]. The strong water absorption in
this band also makes this technique very challenging to extract useful information from the
skin regarding the glucose concentration.

Bioimpedance Spectroscopy. This method measures the changes in the electrical
properties of the skin caused by glucose in the tissue. A small alternating current is passed
through the tissue at various frequencies, and the corresponding impedances are recorded
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and analyzed. The principle is that the concentration of glucose will affect the electric
conductivity of the blood. The authors of [183–185] have explored using this method for
sensing glucose, but the insensitivity toward change in glucose levels is the major downside.

3.5. Thermal Techniques

The glucose in the blood is diffused into the interstitial fluid and in turn into the cells
for metabolism. Therefore, the amount of glucose in the blood is related to the rate of
metabolism which can be indirectly observed from the body heat emission using thermal
sensors. Below are two methods that look into these properties.

Metabolic Heat Conformation. The general idea of this method is that the glucose
concentration in the blood is related to the rate of metabolic oxidation of glucose. This can be
determined using a thermal sensor to detect metabolic heat generation and an optical sensor
for measuring oxygen saturation, blood rate, and other physiological parameters [186,187].
However, the low performance of this method suggests that there are many other factors
also affecting the physiological parameters. For example, PwD do not produce insulin,
which prevents glucose from entering the cells. Hence, the glucose concentration increases
even though the metabolic rate is unchanged and this event cannot be captured with a
thermal sensor. When the blood sugar has raised to a certain level (typically 250 mg/dL), the
liver starts to break down fat for energy, which only by then heat is generated. Additionally,
PwD struggle with body temperature control [188], which means they have different
thermodynamics and have to be carefully considered. Figure 9 shows the principle of
sensing glucose using metabolic heat conformation.

Light Source
Optical Detector

Skin

Thermal Detector

Blood Vessel

Figure 9. Basic setup for glucose sensing with metabolic heat conformation. Blood flow rate and
blood-related information are obtained using the optical sensors, while heat balance and thermal
generation information are detected using the thermal sensors.

Emission Spectroscopy. Kitazaki et al. [189] demonstrated the possibility of capturing
changes in glucose level remotely using a MIR passive spectroscopic imaging technique
based on two-dimensional Fourier spectroscopy. The idea is that glucose emits light in
the MIR region and has representative peaks at 9.25 and 9.65 µm. Using a spectroscopic
imager, a two-dimensional spectroscopic image is taken on the wrist and the back of the
hand placed 600 mm away. While this method has many attractive properties such as being
easy to set up and supporting remote sensing, it is a fairly new technique and should be
studied more closely to verify its feasibility.

3.6. Fusion Techniques

Combining multiple techniques could potentially improve the performance of a glu-
cose sensing system. By using multiple techniques at the same time, researchers hope
that the techniques can complement each other to achieve better performance. However,
the hardware will inevitably be larger in size to accommodate the additional sensing
components. Here, we look into existing work that used multiple techniques.
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One of the commercially available products called GlucoTrack used ultrasonic, elec-
tromagnetic, and thermal techniques to sense glucose concentration at the earlobe [190].
The glucose concentration changes the density and adiabatic compressibility of the tissue,
which directly affects the acoustic velocity that can be detected with the ultrasound sensor.
The change in glucose concentrations also affects the impedance and the heat generation of
the tissue similar to the bioimpedance spectroscopy and the metabolic heat conformation
methods mentioned above. Multiple studies [191,192] have shown promising results, with
around 22% MARD for people with type 2 diabetes, but the accuracy still needs to be
further improved until it can fulfill the requirements set by the FDA.

Nystrom et al. [193] investigated the effectiveness of combining both NIR spec-
troscopy and bioimpedance spectroscopy for sensing glucose level. The NIR spectroscopy
is useful for determining the glucose level while bioimpedance spectroscopy can detect
changes to the body composition, which has been shown to be one of the effects caused by
diabetes [194]. A study of 34 PwD and 23 people without was conducted, and the results
showed that the combined information can be used to classify people into different levels
of neurography, but not enough for predicting glucose. Sometime later, Fouad et al. [195]
adopted a similar approach and their study with five people without diabetes achieved all
predictions falling into Zone A of Clarke’s error grid, suggesting the validity of combining
both approaches.

3.7. Summary

In this section, we undertake an in-depth exploration of the six types of techniques,
which include optical (both direct and indirect sensing), transdermal, electrical, thermal,
and fusion methods. We delve into the working principles behind these techniques and
highlight the relevant key publications. Each of these techniques is characterized by
its own unique properties and design principles, with their respective advantages and
disadvantages outlined in Table 4. Additionally, the studies involving three or more
participants and are evaluated with the metrics mentioned in Section 2.4 are compared in
Table 5.

Table 4. A summary of the advantages and disadvantages of the types of techniques used for
noninvasive glucose sensing.

Types of Techniques Advantages Disadvantages

Optical (Direct) • Good correlation with blood glucose
• Glucose resides in the skin
• Light cannot penetrate deeply into the skin
• Affected by interfering substances in the skin

Optical (Indirect) • Can be measured at the skin surface • Affected by many physiological and
environmental factors

Transdermal • Easy to analyze after ISF is extracted from skin

• Low glucose concentration in extracted ISF
• Cannot detect rapid changes due to long

extraction process
• May cause discomfort to the user
• Affected by sweating

Electrical • Can probe the whole tissue • Weak correlation with blood glucose

Thermal • Easy to sense skin temperature
• May not work for people without diabetes
• Affect by many physiological and environmental

factors

Fusion
• Multiple modalities can complement with each

other • Additional hardware is required
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Table 5. A summary of the in vivo studies performances grouped by the types of techniques.
The studies are evaluated with the mean absolute relative error (MARD), Zones A and B of the
Clarke’s error grid (or the consensus error grid if specified), correlation coefficient (r), coefficient of
determination (R2), mean absolute difference (MAD), and root mean square error (RMSE).

Ref. Year
Clinical Study

Study Result
N w/ Diabetes w/o Diabetes

NIR Spectroscopy

[82] 2002 9 Yes No MARD: 20.6%; Zone A: 63.5%; Zone B: 34.9%

[84] 2010 36 No Yes r: 0.48; RMSE: 1.34 mmol/l; Zone A + B: 100.0%

[86] 2016 5 No Yes Zone A + B: 100.0%

[92] 2018 36 Yes Yes MARD: 14.4%; Zone A: 96.6%; Zone B: 3.4%
(consensus)

[89] 2021 19 No Yes r: 0.92, Zone A: 97.96%

[79] 2022 635 Yes Yes Zone A: 100.0%

MIR Spectroscopy

[85] 2014 3 No Yes Zone A: 84.0%

[87] 2018 6 No Yes r: 0.36; Zone A + B: 100.0%

Occlusion Spectroscopy

[90] 2007 23 Yes No MARD: 17.2%; Zone A: 69.7%; Zone B: 25.7%

Photoacoustic Spectroscopy

[98] 2015 30 No Yes MARD: 9.61% ± 10.55%. Zone A: 87.24%; Zone B:
12.76%

[99] 2017 24 No Yes MARD: 8.84%; Zone A: 92.86%; Zone B: 7.14%

[102] 2018 5 Yes Yes MAD: 16 ± 7 mg/dL.

Raman Spectroscopy

[108] 2005 17 No Yes MARD: 7.8% ± 1.8%; R2: 0.83 ± 0.10

[109] 2009 30 Yes No MAD: 38 mg/dL; Zone A: 53.0%; Zone B: 39.0%

[110] 2018 35 Yes No MARD: 25.8%; Zone A + B: 93.0% (consensus)

[106] 2019 12 No Yes RMSEP = 0.27 mmol/L; R2 = 0.98; Zone A + B:
100.0%

[107] 2021 15 Yes No MARD: 26.3% ± 10.8%; Zone A + B: 93.6%

Polarimetry

[123] 2020 50 Yes Yes MARD: 10.0%; Zone A: 89.0%; Zone B: 11.0%; r: 0.91

Photoplethysmography

[136] 2019 30 Yes Yes r: 0.95

[137] 2019 611 Yes Yes Zone A: 80.6%; Zone B: 17.4%

[138] 2020 200 Yes Yes MARD: 7.62%

[139] 2020 8 Yes Yes r: 0.858; Zone A: 74.29%; Zone B: 25.71%

[140] 2021 26 n/a n/a Zone A: 96.15%; Zone B: 3.85%

Reverse Iontophoresis

[147] 2001 231 Yes Yes MARD: 19.0%; r: 0.85; Zone A + B: 95.3%

[156] 2022 23 Yes Yes Zone A: 46.99%; Zone B: 37.35%

Metabolic Heat Conformation

[186] 2004 10 Yes Yes r: 0.91

[187] 2017 31 Yes Yes r: 0.89; Zone A + B: 94.4%

Fusion Techniques

[192] 2018 114 Yes No MARD: 22.7%; Zone A + B: 98.0%

[195] 2018 5 Yes No MAD: 3.794 mg/dL; r: 0.92; Zone A: 100.0%
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4. Current Barriers to Noninvasive Glucose Sensing

In the previous section, we investigated the techniques proposed by researchers for
sensing glucose noninvasively. While they sound promising, there are still many problems
that have to be addressed before they can reach the stage of commercialization. Here, we
explore the common barriers and obstacles faced by these sensing techniques.

4.1. Confounding Factors

The properties of glucose are leveraged in various sensing techniques, but some
substances that are present in the tissue and biological fluid also exhibit similar properties.
One such property of glucose is the strong light absorption of specific wavelengths, but
substances like water, lipid, and protein also have overlapping absorption peaks with
glucose. This means that a change in the concentration of these substances can alter
the absorption spectrum even though the glucose level remains unchanged, leading to
inaccurate glucose predictions. This is a challenge for all optical methods that rely on
absorption, including infrared spectroscopy and photoacoustic spectroscopy.

Methods that infer glucose levels from the properties of the tissue and blood are
particularly susceptible, as there are even more confounding factors that would also affect
these properties. For example, environmental factors including temperature and moisture
content are the major source of noise for methods that predict glucose level using the dielec-
tric properties of the skin. This effect is more prominent when the glucose concentration is
low. Therefore, to ensure accurate predict glucose levels, the main confounding substances
and how to isolate their effects must be understood.

4.2. Selection of Sensing Location

The ideal location for glucose sensing should strike a balance between the system
performance and the user experience. To maximize performance without compromising
usability and convenience, the testing site should be chosen based on its physical and
chemical properties. It has been shown that locations with a thin outermost layer of the
epidermis, a minimal amount of fat content, and good blood circulation provide the best
results for optical methods [83,102].

The outermost layer of the epidermis, i.e., the stratum corneum, is a layer of dead
skin cells packed with structural protein keratin and acts as a chemical barrier. As keratin
is the primary source that causes scattering in the skin [196], a thin stratum corneum
reduces the optical path through the keratin, bringing the ISF closer to the surface. This
effectively reduces the scattering and absorption of light when passing through the skin
and eventually increases the signal-to-noise (SNR) ratio. As fatty tissues also absorb light,
selecting a testing site with less fat content can further improve the SNR. Additionally, a
reduction in fat content and better blood circulation enhance the glucose diffusion into
the ISF, resulting in a faster equilibration between blood glucose and ISF glucose and
minimizing the lag time problem [102].

Multiple sites have been proposed in previous studies, with [83] suggesting the tongue
and [102] the fingertips. While the tongue fits the aforementioned requirements, it will
result in discomfort when a user has to stick out their tongue and place it on the sensing
interface. The fingertip is the preferred choice because of its accessibility, convenience,
and compatibility with the requirements for optimal performance. This is particularly
crucial for continuous monitoring as the sensor has to be attached to the testing site for an
extended period of time. While the performance of the sensing system is important, the
success of the technology will ultimately depend on the user’s comfort and convenience.

4.3. Glucose Distribution

When the skin is probed with a sensor, we expect a signal from the ISF glucose to be
received. In reality, the signal can come from glucose in the blood, ISF, and intracellular
fluid (fluid inside the cells). Depending on the testing site and the penetration depth
of the excitation light, it is possible that all three fluids are actually probed at the same
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time [109]. Therefore, the glucose dynamics of all these fluids should be considered and
modeled together.

The distribution of glucose varies among the fluids. For instance, ISF glucose lag time
depends on the location of the fluid. The lag time during the decay phase can be as quick
as 1–3 min in the dermal layer. The model in [197] even predicts a negative lag time for ISF
glucose in the epidermis layer, suggesting that the ISF glucose concentration can decrease
before the blood glucose level (∼1 min). This phenomenon has been reviewed in [198].
Other properties such as intracellular fluid having a much lower glucose concentration
because of the rapid metabolism of glucose [197] and the volume of ISF being generally
larger than blood in the skin [199] should also be considered when modeling the data. As
the distribution is site-dependent, it is advised that glucose sensing should be performed at
the same location consistently.

4.4. Model Generalization

One major challenge of noninvasive glucose sensing is the generalizability of the
prediction models. These models work well if only one of the variables changes, i.e.,
glucose concentration, while everything else is kept constant. However, there is a huge
difference between individuals; the composition of the body tissues and biological fluid,
skin conditions, and physiological state can all vary greatly among people. Some of these
differences can be linked to a person’s demographic characteristics. For instance, race could
have an effect on the amount of pigment inside the skin, which is a strong light-absorbing
substance and would affect absorption-based optical techniques. Males on average have
thicker skin than females, which means it is harder to reach the ISF [200]. As a result, less
ISF is probed using optical methods or extracted via transdermal methods. The amount
of collagen can be inversely correlated with a person’s age as the production of collagen
decreases with age [201]. This alters the scattering coefficient of the skin and adds noise to
optical methods. The combined effect of all these factors could result in a totally different
skin characteristic for each individual.

Underrepresented minority groups, in particular, often suffer from using generalized
models as there are limited training data available from these populations. This leads to a
lowered sensing performance for these racial and ethnic populations. Personalized models
can be utilized to address this issue using models that are tailored to each individual’s
specific characteristics. By collecting training data from the user, the model can adapt to
the user and better isolate the effect of glucose level on the sensor readings. However, this
approach will require a calibration stage that may involve blood glucose measurements
from finger prick tests, causing inconvenience to the user. Multiple calibrations may also
be necessary from time to time due to changes in the person’s physiological parameters.

4.5. Hardware Design

The hardware design heavily affects the system adoption. A machine as large as
a washing machine is nowhere attractive to the user, even if it can provide an accurate
measurement. Conversely, a wearable device with poor performance is unsafe and unlikely
to be approved for clinical purposes. Hence, the key is to balance both the performance
and the form factor so that the device is portable and reliable. That said, the accuracy
of the glucose monitoring system should be the top priority, even if it means sacrificing
compactness. The reason is that there are currently no commercially available products
that are accurate enough for clinical usage. As a first step, a portable form factor with a
good sensing performance would be ideal. Further miniaturizing of the sensing system
should be considered later once a reliable system has been established.

The user’s behavior can have a significant impact on the system’s performance. For
example, the pressure exerted by the sensor on the skin can affect the skin’s optical prop-
erties. High pressure can cause tissue deformation and displacement of ISF, while low
pressure can generate air pockets between the skin and the sensor. In the case of continuous
monitoring, additional factors should be taken into consideration. The secretion of sweat
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and sebum on the skin surface would gradually interfere with the sensor signal, causing a
sensor drift over time. Ambient factors such as temperature and humidity all add up as
noise to the signal as well. To maintain accuracy under various conditions, it is important
to consider and incorporate these effects into the device’s design.

4.6. Acquisition of Ground Truth

The accuracy of a glucose monitoring system can be evaluated by comparing its
predicted glucose values to a reference value, also known as the ground truth. This
reference value is typically collected at the same time the system makes a prediction
and is retrieved through an invasive finger prick test and/or a minimally invasive CGM.
The reference value serves as the baseline, and the performance of the system can be
evaluated by performing a pairwise comparison between the predicted glucose value
and the reference glucose value and presenting the result using the evaluation metrics
mentioned in Section 2.4.

However, the reference values obtained through the finger prick tests of CGMs can
deviate from the actual ground truth by a few margins [202–204]. Studies have shown
that CGM readings can have an average error of 10%. This error can make it difficult
to prove the performance of the system, particularly if time and cost are also considered
during the evaluation. Despite the error, this is sufficient to verify a proof of concept and
to demonstrate the feasibility of a prototype. However, to definitively prove the accuracy
and precision of a system, the results should be compared with those obtained from a
laboratory test.

4.7. Clinical Study

Many of the methods mentioned above only performed experiments on people without
diabetes. The blood glucose level of an individual without diabetes is naturally managed to
the range between 70 and 140 mg/dL most of the time. Not only is it significantly smaller
than what a person with diabetes would experience (50–400 mg/dL), but also by the
definition of Clarke’s error grid, a constant prediction of 100 mg/dL (or any value between
70 and 180 mg/dL) for all reference glucose values in the range of 70–240 mg/dL will fall
inside the clinically acceptable region. Therefore, it is biased to report a clinical study that
has a majority of the results in the clinically acceptable range with people without diabetes
and conclusively infers the feasibility of the method. A clinical study with PwD is very
much needed before a conclusion can be drawn.

Moreover, it ignores the effect caused by insulin in the biological fluid [205]. For
people without diabetes, it is guaranteed that the insulin level will increase with the glucose
level; the insulin dynamic is predictable. On the other hand, PwD may have too much or
too little insulin in the body at a given time. The body may react differently to the abnormal
level of insulin, which could have an impact to the physiological factors. This additional
variable is not seen in the population without diabetes.

5. Potential Solution and Future Directions

Despite decades of research, noninvasive glucose sensing remains a huge challenge to
this day. Different techniques and modalities have been carefully considered by researchers
to be the possible candidate to overcome this challenge. To predict blood glucose level
noninvasively, various biological fluids have been studied. While sweat and saliva are easy
to collect, their low glucose concentration and the weak correlation with blood glucose are
the main reasons they cannot be used to achieve high accuracy. ISF, on the other hand, offers
a promising alternative. As it is strongly correlated with blood glucose and is present right
below the outermost layer of the skin, ISF has emerged as a good candidate for noninvasive
glucose sensing.

Since ISF glucose resides in the skin, it is challenging to measure the glucose con-
centration directly with great accuracy and precision. Many researchers have turned to
indirect techniques that measure the properties of the skin and blood that are also affected
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by glucose concentration. These techniques usually have the advantage of being easier
to set up and more cost-effective, with readily available off-the-shelf sensors to detect the
properties on the skin surface. However, the correlation between these properties and blood
glucose level is generally weak, as many other physiological and environmental factors
also have impacts on the properties. While these techniques show promise in controlled
environments, their performance in real-world scenarios remains uncertain. On the other
hand, transdermal techniques extract the ISF from the skin directly for further analysis,
which sounds attractive at first glance as it removes many interfering substances from
the analyte. However, the extraction process is slow and it takes a long time to extract
a sufficient amount of ISF for analysis. This causes skin irritation to the user and is not
capable of detecting rapid changes in the glucose level.

Therefore, techniques based on glucose properties are more concrete as the measure-
ments have direct correlations with the glucose concentration. In particular, the optical
properties of glucose are exploited due to its attractive features; the skin is probed with
visible or infrared light, which is truly noninvasive, and a well-controlled light beam within
the safety limit is generally safe to the user [206,207]. The major downside is that the light
has to pass through the outermost layer of the skin to reach the ISF. Since the light will
interact with other substances found in the skin and the ISF, it may cause interference with
the glucose signal.

Improving Optical Sensing Performance. Glucose readings obtained from the skin
can be easily influenced by a plethora of factors. All these factors have to be addressed
before a device can be commercialized for use in the wild. This is a challenging problem
and cannot be easily solved in one go. In this case, a divide-and-conquer approach would
be suitable. Certain variables can be fixed or restricted to some extent. Biological variables
such as skin thickness and fat content are relatively constant at a given sensing site. A
hardware structural design can be developed to help align the body part (e.g., fingertip)
with the sensor to minimize the offset between each sensing session. Instead of relying
on the user to apply consistent pressure on the sensor, the device can be designed with a
mechanism to apply the optimal pressure on the skin every time the sensor is used. By
cleaning and drying the skin before using the sensor, which is a very common practice for
optical approaches, the impact caused by sweat, sebum, and other contaminants on the
sensor can be minimized. Additionally, a personalized model can be utilized so that it can
better adapt to the individual differences among the users. This means that the model is
created by collecting data from a single person and training a model either from scratch or
by fine-tuning a pre-trained model. This allows the model to learn the signal changes with
respect to the glucose fluctuations, with most of the other variables kept constant. However,
this approach requires collecting reference glucose values through invasive methods such
as finger prick tests, which can be inconvenient to the user.

The remaining factors can be handled with a multivariate analysis. Variables like body
temperature and skin hydration can interfere with the sensor readings, which may mask
the glucose response and have to be isolated. One possible solution is to combine multiple
modalities such that these factors generate contrasting signals among the modalities, which
can be distinguished by a model. However, the data collected from multiple modalities
will have a higher dimension, and hence, a sufficiently large dataset would be necessary
to train the model. The hardware will also have to accommodate the various modalities,
which could lead to a more complex design that potentially increases the size and cost of
the system.

Given the complexity of the problem with numerous variables, collecting a large
dataset in the hopes of training a generalized model may not be practical at this stage.
Instead, it is more advisable to first study and understand the impact of each factor on
the sensor signal. This allows us to rank them in order of significance and then to address
them systematically. In the near future, it is expected that personalized models that are
calibrated individually will be first used to demonstrate the feasibility and performance of
a technique. Upon verification of the performance, a comprehensive clinical study should
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be conducted next, aiming to construct a generalized model. With a larger dataset, the use
of neural networks is expected to enhance the performance further.

Clinical Evaluation. Many techniques are evaluated with glucose solutions and
synthesized tissues to demonstrate their potential, but it does not reflect their actual per-
formance in vivo. These experiments simplify the problem by eliminating many variables
from the equation, making it easier to establish a good correlation between the measured
signal and the reference glucose concentration. They are useful for testing the concept or
principle behind a method, and a positive outcome can encourage further exploration of
the proposed method.

Some methods are then tested with a small group of individuals without diabetes to
show the robustness of the system. At this stage, the reference glucose level is obtained
through invasive means, usually with finger prick tests or CGMs. This is valid as long
as the potential error induced is considered and acknowledged. On the other hand, it
should be noted that the blood glucose level of people without diabetes and, by extension,
the ISF glucose level, are managed within a healthy range of 70–140 mg/dL. This narrow
range makes it easier to obtain a low MARD value and have most of the predictions fall
into the clinically acceptable range of Clarke error grid. Thus, caution should be exercised
when interpreting results from studies with individuals without diabetes. Moreover, many
studies often collect data only for a limited duration, usually within a few hours. This can
lead to overestimating the performance of the system as it is not tested against fluctuations
in environmental and physiological factors. The system would probably require another
round of calibration to work well at another time.

Given the aforementioned problems, a clinical study with PwD spanning across a
substantial amount of time is essential to prove the feasibility of the noninvasive techniques.
A wide range of glucose values, normally from 50 to 400 mg/dL, should be used to ensure
low error rates for PwD. The study period should last several days or even weeks to test
the system against fluctuations in environmental and physiological factors. Last but not
least, a diverse population with underrepresented minority groups should also be included
in the study so that the technique is generalizable across populations.

Numerous efforts have been dedicated to achieving noninvasive glucose sensing, with
optical techniques receiving the most attention over the past decades. In vivo clinical
studies involving people with and without diabetes have shown promising results. Never-
theless, there are remaining challenges that require research effort to achieving practical
deployment, such as handling user diversity and environmental variations. By combin-
ing multiple modalities such as NIR spectroscopy and Raman spectroscopy, collecting a
comprehensive dataset from clinical studies involving individuals both with and without
diabetes, and leveraging deep learning technology for data analysis, the robustness of these
systems could be further improved, bringing them closer to meeting clinical standards.
Conversely, some non-optical methods have recently emerged, exhibiting some appeal-
ing properties compared with optical methods. However, additional clinical studies are
necessary to effectively demonstrate their feasibility on individuals.

With the recent advancements in technology, electronics have become smaller, more
efficient, and more powerful. Many previously insurmountable challenges have been
overcome. Despite the remaining obstacles, we maintain an optimistic outlook for future
progress and development in this field.

6. Conclusions

The field of noninvasive glucose sensing still has much room for improvement. Al-
though recent technological advancements have brought about great strides in these sensing
systems, making them more convenient and user-friendly, barriers to the commercialization
of these systems still remain. This includes calibration issues, racial/ethnic disparities,
physiological effects, and form factor of the systems. Addressing these barriers will be a
complex and ongoing process, but work is on the way to solving these problems. With
continuous effort, we expect an improved system and overall better care for PwD.
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