Noninvasive Glucose Sensing with Light

Ho Man Colman Leung ¹, Tianxing Li ², Temiloluwa Prioleau ¹, Tam Vu ³, Gregory Forlenza ⁴, Xia Zhou ¹ ¹Columbia University ²Michigan State University, ³University of Colorado Boulder, ⁴University of Colorado Denver

1. Background

- Diabetes is a chronic condition that causes abnormal blood glucose level
- More than 10% of the U.S. population have diabetes

2. Motivation

Off-the-shelf products are invasive and inconvenient

FreeStyle Libre 2 OneTouch UltraMini

3. Rationale

- Glucose is optically active
- The concentration of glucose molecules C is directly proportional to the rotation angle of the polarization direction α

Rotatory power of glucose at wavelength λ and temperature T

4. Challenges

- Human skin is highly absorbing and scattering
- User diversity
- Confounding molecules
- Specular reflection

Optical Properties of Human Skin 53% Absorbed Subcutaneous Tissue Dermis **Epidermis** 40% Randomly Polarized Light 2% Polarized Light Polarized Light 5% Specular Reflection Light

5. Earlier Work^[1]

- Extracting weak polarized signal through depolarization cancellation
- Probing the skin using 3 wavelengths and 50 intensities
- Predicting BGL using a machine learning model

6. Ongoing Work

- Miniaturizing the prototype
- New structural design that traps specular reflected light in a chamber
- Refining feature extraction and machine learning models

7. Preliminary Result

- participant, 216 samples
- 9.5% mean absolute relative difference (MARD)
- Our result is comparable with previous result of 10% MARD with 50 participants and 391 samples

8. Future Work

- Clinical pilot study with diabetic patients from diverse background
- Implementing the system into a wearable

Light Trap Mechanism Human Skin Specular Reflection Laser Diode Light interacted with the skin **Absorptive** Coating Photodiode

Machine Learning

